精英家教网 > 初中数学 > 题目详情
阅读:如图(1),在△ABC和△DEF中,∠ABC=∠DEF=90°,AB=DE=a,BC=EF=b(a<6),B、C、D、E四点都在直线m上,点B与点D重合,连接AE、FC,我们可以借助于S△ACE和S△FCE的大小关系证明不等式:a2+b2> 2ab(b>a>0)
证明过程如下:
∵BC=b,BE=a,EC=b-a,
∴S△ACE=EC·AB=(b-a)a,
∴S△FCE=EC·FE=(b-a)b,
∵b>a>0,
∴S△FCE >S△ACE
(b-a)b>(b-a)a,
∴b2-ab>ab-a2
∴a2+b2>2ab。
解决下列问题:
(1)现将△DEF沿直线m向右平移,设BD=k(b-a),且0≤k≤1,如图(2),当BD=EC时,k=____,利用此图,仿照上述方法,证明不等式:a2+b2>2ab(b >a>0);
(2)用四个与△ABC全等的直角三角形纸板进行拼接,也能够借助图形证明上述不等式请你画出一个示意图,并简要说明理由。

                 (1)                                  (2)
解:(1)k=
证明:如图(1),连接AD、BF,
可得BD=(b-a),
∴S△ABD=BD·AB=××(b-a)·a=a(b-a),
S△FBD=BD·FE=××(b-a)·b=b(b-a),
∵b>a>0,
∴S△ABD<S△FBD
<
∴ab-a2<b2-ab
∴a2+b2>2ab,
 (2)答案不唯一,
举例:如图(2),理由:
延长BA、FE交于点I,
∵b>a >0,
∴S矩形IBDE> S矩形ABDG
即b(b-a)>a(b-a),
∴b2-ab> ab-a2
∴a2+b2 >2ab,
举例:如图(3),理由:
四个直角三角形的面积和S1=4×ab=2ab,
大正方形的面积S2=a2+b2
∵b>a>0,
∴S2>S1
∴a2+b2>2ab。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

30、阅读:如图1,CE∥AB,所以∠1=∠A,∠2=∠B.所以∠ACD=∠1+∠2=∠A+∠B.这是一个有用的结论,请用这个结论,在图2的四边形ABCD内引一条和一边平行的直线,求∠A+∠B+∠C+∠D的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

探究问题:
(1)阅读理解:
①如图(A),在已知△ABC所在平面上存在一点P,使它到三角形顶点的距离之和最小,则称点P为△ABC的费马点,此时PA+PB+PC的值为△ABC的费马距离;
②如图(B),若四边形ABCD的四个顶点在同一圆上,则有AB•CD+BC•DA=AC•BD.此为托勒密定理;
精英家教网
(2)知识迁移:
①请你利用托勒密定理,解决如下问题:
如图(C),已知点P为等边△ABC外接圆的
BC
上任意一点.求证:PB+PC=PA;
②根据(2)①的结论,我们有如下探寻△ABC(其中∠A、∠B、∠C均小于120°)的费马点和费马距离的方法:
第一步:如图(D),在△ABC的外部以BC为边长作等边△BCD及其外接圆;
第二步:在
BC
上任取一点P′,连接P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C)=P′A+
 

第三步:请你根据(1)①中定义,在图(D)中找出△ABC的费马点P,并请指出线段
 
的长度即为△ABC的费马距离.
精英家教网
(3)知识应用:
2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难,为解决老百姓的饮水问题,解放军某部来到云南某地打井取水.
已知三村庄A、B、C构成了如图(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),现选取一点P打水井,使从水井P到三村庄A、B、C所铺设的输水管总长度最小,求输水管总长度的最小值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2012•樊城区模拟)下面是有关三角形内外角平分线的探究,阅读后按要求作答:
探究1:如图(1),在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现:∠BOC=90°+
1
2
∠A(不要求证明).
探究2:如图(2)中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的数量关系?请说明理由.
探究3:如图(3)中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的数量关系?(只写结论,不需证明).结论:
∠BOC=90°-
1
2
∠A
∠BOC=90°-
1
2
∠A

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列材料:
木工张师傅在加工制作家具的时候,用下面的方法在木板上画直角:
如图1,他首先在需要加工的位置画一条线段AB,接着分别以点A、点B为圆心,以大于
12
AB
的适当长为半径画弧,两弧相交于点C,再以C为圆心,以同样长为半径画弧交AC的延长线于点D(点D需落在木板上),连接DB.则∠ABD就是直角.
木工张师傅把上面的这种作直角的方法叫做“三弧法”.

解决下列问题:
(1)利用图1就∠ABD是直角作出合理解释(要求:先写出已知、求证,再进行证明);
(2)图2表示的一块残缺的圆形木板,请你用“三弧法”,在木板上画出一个以EF为一条直角边的直角三角形EFG(要求:尺规作图,不写作法,保留作图痕迹).

查看答案和解析>>

同步练习册答案