精英家教网 > 初中数学 > 题目详情
已知:如图,AB是⊙O的直径,F,C是⊙O上两点,且
BC
=
CF
,过C点作DE⊥AF的延长线于E点,交AB的延长线于D点.
(1)试判断DE与⊙O的位置关系,并证明你的结论;
(2)试判断∠BCD与∠BAC的大小关系,并证明你的结论.
分析:(1)利用平行线判定定理得出CO∥AE,进而得出CO⊥DE,利用切线的判定定理得出即可.
(2)利用圆周角定理得出∠OCB+∠2=90°,进而得出利用∠1=∠2,得出∠1=∠BCD即可得出答案.
解答:(1)DE与⊙O的位置关系是:DE是⊙O的切线;
证明:如图所示,连接CO,
∵AO=CO,
∴∠1=∠2,
BC
=
CF

∴∠1=∠3,
∴∠2=∠3,
∴CO∥AE,
∵DE⊥AF,
∴CO⊥DE,
∴DE是⊙O的切线;

(2)∠BCD与∠BAC的大小关系为:∠BCD=∠BAC,
证明:∵CO⊥DE,
∴∠OCD=90°,
∴∠OCB+∠BCD=90°,
∵AB是⊙O的直径,
∴∠BCA=90°,即∠OCB+∠2=90°,
∴∠2=∠BCD,
∵∠1=∠2,
∴∠1=∠BCD,
即∠BCD=∠BAC.
点评:此题主要考查了切线的判定定理和圆周角定理、平行线判定定理等知识,根据已知得出∠1=∠3以及∠OCB+∠2=90°是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、已知:如图,AB是⊙O的直径,BC是和⊙O相切于点B的切线,⊙O的弦AD平行于OC.
求证:DC是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•门头沟区一模)已知:如图,AB是⊙O的直径,AC是⊙O的弦,M为AB上一点,过点M作DM⊥AB,交弦AC于点E,交⊙O于点F,且DC=DE.
(1)求证:DC是⊙O的切线;
(2)如果DM=15,CE=10,cos∠AEM=
513
,求⊙O半径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•昆明)已知:如图,AB是⊙O的直径,直线MN切⊙O于点C,AD⊥MN于D,AD交⊙O于E,AB的延长线交MN于点P.求证:AC2=AE•AP.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•平谷区二模)已知,如图,AB是⊙O的直径,点E是
AD
的中点,连接BE交AC于点G,BG的垂直平分线CF交BG于H交AB于F点.
(1)求证:BC是⊙O的切线;
(2)若AB=8,BC=6,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AB是⊙O的直径,BC为⊙O的切线,过点B的弦BD⊥OC交⊙O于点D,垂足为E.
(1)求证:CD是⊙O的切线;
(2)当BC=BD,且BD=12cm时,求图中阴影部分的面积(结果不取近似值).

查看答案和解析>>

同步练习册答案