精英家教网 > 初中数学 > 题目详情
(2007•徐州)如图,过四边形ABCD的四个顶点分别作对角线AC、BD的平行线,所围成的四边形EFGH显然是平行四边形.
(1)当四边形ABCD分别是菱形、矩形、等腰梯形时,相应的平行四边形EFGH一定是“菱形、矩形、正方形”中的哪一种?请将你的结论填入下表:
平行四边形ABCD菱形矩形等腰梯形
平行四边形EFGH   
(2)反之,当用上述方法所围成的平行四边形EFGH分别是矩形、菱形时,相应的原四边形ABCD必须满足怎样的条件?

【答案】分析:(1)原四边形是菱形时,菱形的对角线互相垂直,因此平行四边形应该是个矩形(平行四边形相邻的两边都垂直),
原四边形是矩形或等腰梯形时,它的对角线相等,那么平行四边形应该是个菱形(平行四边形相邻的两边都相等);
(2)根据(1)我们可看出要想使得出的平行四边形是矩形,那么原四边形的对角线就必须垂直,因为只有这样平行四边形的相邻两边才垂直.同理平行四边形是菱形时,原四边形的对角线就必须相等.
解答:解:(1)四边形ABCD是菱形时,平行四边形EFGH是矩形,
四边形ABCD是矩形时,平行四边形EFGH是菱形,
四边形ABCD是等腰梯形时,平行四边形EFGH是菱形;

(2)当平行四边形是矩形时,原四边形ABCD必须满足的条件是对角线互相垂直,
当平行四边形是菱形时,原四边形ABCD必须满足的条件是对角线相等.
点评:本题主要考查了矩形的性质和判定,菱形的性质和判定,等腰梯形的判定等知识点.
练习册系列答案
相关习题

科目:初中数学 来源:2007年全国中考数学试题汇编《图形的相似》(05)(解析版) 题型:解答题

(2007•徐州)如图,△ABC中,点D在AC上,点E在BC上,且DE∥AB,将△CDE绕点C按顺时针方向旋转得到△CD′E′(使∠BCE′<180°),连接AD′、BE′,设直线BE′与AC、AD′分别交于点O、E.
(1)若△ABC为等边三角形,则的值为1,求∠AFB的度数;
(2)若△ABC满足∠ACB=60°,AC=,BC=,①求的值和∠AFB的度数;②若E为BC的中点,求△OBC面积的最大值.

查看答案和解析>>

科目:初中数学 来源:2009年湖北省黄石市十六中中考数学模拟试卷(解析版) 题型:选择题

(2007•徐州)如图,水平放置的甲、乙两区域分别由若干大小完全相同的黑色、白色正三角形组成,小明随意向甲、乙两个区域各抛一个小球,P(甲)表示小球停在甲中黑色三角形上的概率,P(乙)表示小球停在乙中黑色三角形上的概率,下列说法中正确的是( )

A.P(甲)>P(乙)
B.P(甲)=P(乙)
C.P(甲)<P(乙)
D.P(甲)与P(乙)的大小关系无法确定

查看答案和解析>>

科目:初中数学 来源:2007年江苏省徐州市中考数学试卷(解析版) 题型:解答题

(2007•徐州)如图,△ABC中,点D在AC上,点E在BC上,且DE∥AB,将△CDE绕点C按顺时针方向旋转得到△CD′E′(使∠BCE′<180°),连接AD′、BE′,设直线BE′与AC、AD′分别交于点O、E.
(1)若△ABC为等边三角形,则的值为1,求∠AFB的度数;
(2)若△ABC满足∠ACB=60°,AC=,BC=,①求的值和∠AFB的度数;②若E为BC的中点,求△OBC面积的最大值.

查看答案和解析>>

科目:初中数学 来源:2007年江苏省徐州市中考数学试卷(解析版) 题型:解答题

(2007•徐州)如图,一艘船以每小时30海里的速度向东北方向航行,在A处观测灯塔S在船的北偏东75°的方向,航行12分钟后到达B处,这时灯塔S恰好在船的正东方向.已知距离此灯塔8海里以外的海区为航行安全区域,这艘船可以继续沿东北方向航行吗?为什么?(参考数据:≈1.41,≈1.73)

查看答案和解析>>

科目:初中数学 来源:2007年江苏省徐州市中考数学试卷(解析版) 题型:解答题

(2007•徐州)如图,一个可以自由转动的均匀转盘被分成了4等份,每份内均标有数字,小明和小亮商定了一个游戏,规则如下:
(1)连续转动转盘两次;
(2)将两次转盘停止后指针所指区域内的数字相加(当指针恰好停在分格线上时视为无效,重转);
(3)若数字之和为奇数,则小明赢;若数字之和为偶数,则小亮赢.
请用“列表”或“画树状图”的方法分析一下,这个游戏对双方公平吗?并说明理由.

查看答案和解析>>

同步练习册答案