精英家教网 > 初中数学 > 题目详情
10、若O是?ABCD中对角线AC与BD的交点,且AB=5,AC=8,BD=6,那么下列结论中不正确的是(  )
分析:根据题意可利用勾股定理的逆定理,先推出该平行四边形的对角线互相垂直平分,然后对四个选项作出判断得出结论.
解答:解:根据题意可知:OA=4,OB=3,AB=5,所以AC⊥BD.
A、平行四边形ABCD周长为5×4=20,正确;
B、点C在线段BD的垂直平分线上,正确;
C、平行四边形ABCD面积为(8+6)÷2=24,正确;
D、AD与BC之间的距离是不是线段CD的长,错误.
故选D.
点评:主要考查了平行四边行的基本性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1)如果△ABC的面积是S,E是BC的中点,连接AE(图1),则△AEC的面积是
 

(2)在△ABC的外部作△ACD,F是AD的中点,连接CF(图2),若四边形ABCD的面积是S,则四边形AECF的面积是
 

精英家教网
(3)若任意四边形ABCD的面积是S,E、F分别是一组对边AB,CD的中点,连接AF,CE(图3),则四边形AECF的面积是
 

拓展与应用
(1)若八边形ABCDEFGH的面积是100,K,M,N,O,P,Q分别是AB,BC,CD,EF,FG,GH的中点,连接KH,MG,NF,OD,PC,QB(图4),则图中阴影部分的面积是
 

(2)四边形ABCD的面积是100,E,F分别是一组对边AB,CD上的点,且AE=
1
3
AB,CF=
1
3
CD,连接AF,CE(图5),则四边形AECF的面积是
 

精英家教网
(3)?ABCD的面积为2,AB=a,BC=b,点E从点A出发沿AB以每秒v个单位长的速度向点B运动.点F从点B出发沿BC以每秒
bv
a
个单位的速度向点C运动.E、F分别从点A,B同时出发,当其中一点到达端点时,另一点也随之停止运动.请问四边形DEBF的面积的值是否随着时间t的变化而变化?若不变,请写出这个值
 
,并写出理由;若变化,说明是怎样变化的.

查看答案和解析>>

科目:初中数学 来源: 题型:

四边形是大家最熟悉的图形之一,我们已经发现了它的许多性质.只要善于观察、乐于探索,我们还会发现更多的结论.
(1)四边形一条对角线上任意一点与另外两个顶点的连线,将四边形分成四个三角形(如图①),其中相对的两对三角形的面积之积相等.你能证明这个结论吗?试试看.
已知:在四边形ABCD中,O是对角线BD上任意一点.(如图①)
求证:S△OBC•S△OAD=S△OAB•S△OCD
(2)在三角形中(如图②),你能否归纳出类似的结论?若能,写出你猜想的结论,并证明:若不能,说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•历城区三模)(1)如图1所示,在平行四边形ABCD中,E、F是对角线BD上的两点,且BE=DF,连接AE、CF.请你猜想:AE与CF有怎样的数量关系?并对你的猜想加以证明.
(2)如图2所示,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形.若AB=2,求△ABC的周长.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•保定一模)已知正方形ABCD的边长为4,E是边CD上的一个动点,以CE为一条直角边作等腰直角三角形CEF,连接BF、FD、BD,则BD与CF的位置关系式
BD∥CF
BD∥CF

(1)如图1,当CE=4(即点E与点D重合)时,△BDF的面积为
8
8

(2)如图2,当CE=2(即点E为CD的中点)时,△BDF的面积为
8
8

(3)如图3,当CE=3时,△BDF的面积为
8
8


(4)如图4,根据上述计算结果,当E是CD边上任意一点时,请提出你对△BDF面积与正方形ABCD的面积之间关系的猜想;并证明你的猜想.
(5)如图5,若E是CD延长线上任意一点时,请你判断(4)中的结论是否仍然成立.

查看答案和解析>>

科目:初中数学 来源: 题型:

在矩形ABCD中,AB=6cm,BC=8cm,若将矩形对角线BD对折,使B点与D点重合,
(1)四边形EBFD是什么特殊四边形?请说明理由;
(2)求这个菱形的边长.

查看答案和解析>>

同步练习册答案