精英家教网 > 初中数学 > 题目详情
已知边长为5的正方形ABCD和边长为2的正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.
(1)如图①,连接DF、BF,显然DF=BF,若将正方形AEFG绕点A按顺时针方向旋转,判断“在旋转的过程中,线段DF与BF的长始终相等.”是否正确,为什么?
(2)若将正方形AEFG绕点A按顺时针方向旋转,连接DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长始终相等?并以图②为例说明理由.
分析:(1)不相等,以旋转45°为例,分别求出DF、BF的长度,从而得解;
(2)连接BE,根据正方形的四条边都相等,每一个角都是直角推出∠DAG=∠BAE,然后利用边角边证明△ADG与△ABE全等,再根据全等三角形对应边相等即可证明BE=DG.
解答:解:(1)DF≠BF.
理由如下:如图①,以旋转45°为例,
∵正方形ABCD和正方形AEFG的边长分别为5,2,
∴AF
2
AE=2
2

∴DF=
AD2+AF2
=
52+(2
2
)
2
=
33

BF=AB-AF=5-2
2

∴DF≠BF;

(2)BE与DG始终相等.
理由如下:如图②,连接BE,
在正方形ABCD与正方形AEFG中,AD=AB,AG=AE,
∠DAG+∠BAG=90°,∠BAE+∠BAG=90°,
∴∠DAG=∠BAE,
在△ADG与△ABE中,
AD=AB
∠DAG=∠BAE
AG=AE

∴△ADG≌△ABE(SAS),
∴BE=DG,
即旋转过程中BE与DG的长始终相等.
点评:本题考查了旋转变换的性质,全等三角形的判定与性质,正方形的性质,根据旋转变换只改变图形的位置,不改变图形的大小与形状找出全等的条件是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知边长为a的正方形ABCD,点E在AB上,点F在BC的延长线上,EF与AC交于点O,且AE=精英家教网CF.
(1)若a=4,则四边形EBFD的面积为
 

(2)若AE=
13
AB,求四边形ACFD与四边形EBFD面积的比;
(3)设BE=m,用含m的式子表示△AOE与△COF面积的差.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知边长为1的正方形在坐标系中的位置,如图∠α=75°,求D点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知边长为2的正方形ABCD,P是BC边上一点,E是BC边延长线上一点,过点P作PF⊥AP与∠DCE的平分线CF交于点F.AF与CD交于点G.
(1)求证:AP=PF;
(2)若AP=AG,试说明PG与CF有怎样的位置关系,并求△APG的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•桂林)如图,已知边长为4的正方形ABCD,P是BC边上一动点(与B、C不重合),连结AP,作PE⊥AP交∠BCD的外角平分线于E.设BP=x,△PCE面积为y,则y与x的函数关系式是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知边长为4的正方形ABCD,点E在AB上,点F在BC的延长线上,EF与AC交于点H,且AE=CF=m,则四边形EBFD的面积为
16
16
;△AHE与△CHF的面积的和为
2m
2m
(用含m的式子表示).

查看答案和解析>>

同步练习册答案