精英家教网 > 初中数学 > 题目详情
如图,∠B、∠C的平分线相交于F,过点F作DE∥BC,交AB于D,交AC于E,那么下列结论正确的是
①②④
①②④

①△BDF、△CEF都是等腰三角形;②DE=BD+CE;③BD=CE;④△ADE的周长为AB+AC.
分析:由平行线得到角相等,由角平分线得角相等,根据平行线的性质及等腰三角形的判定和性质.
解答:解:∵DE∥BC,
∴∠DFB=∠FBC,∠EFC=∠FCB,
∵BF是∠ABC的平分线,CF是∠ACB的平分线,
∴∠FBC=∠DFB,∠FCE=∠FCB,
∵∠DBF=∠DFB,∠EFC=∠ECF,
∴△BDF,△CEF都是等腰三角形,故①正确;
∴DF=DB,FE=EC,即有DE=DF+FE=BD+CE,故②正确,
∴△ADE的周长AD+AE+DE=AD+AE+DB+EC=AB+AC,故④正确.
∵F不是DE的中点,
∴BD≠CE,故③错误.
故答案为:①②④.
点评:本题考查了等腰三角形的性质及角平分线的性质及平行线的性质;题目利用了两直线平行,内错角相等,及等角对等边来判定等腰三角形的;等量代换的利用是解答本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

我们所学的几何知识可以理解为对“构图”的研究:根据给定的(或构造的)几何图形提出相关的概念和问题(或者根据问题构造图形),并加以研究.
例如:在平面上根据两条直线的各种构图,可以提出“两条直线平行”、“两条直线相交”的概念;若增加第三条直线,则可以提出并研究“两条直线平行的判定和性质”等问题(包括研究的思想和方法).
请你用上面的思想和方法对下面关于圆的问题进行研究:
(1)如图1,在圆O所在平面上,放置一条直线m(m和圆O分别交于点A、B),根据这个图形可以提出的概念或问题有哪些?(直接写出两个即可)
(2)如图2,在圆O所在平面上,请你放置与圆O都相交且不同时经过圆心的两条直线m和n(m与圆O分别交于点A、B,n与圆O分别交于点C、D).请你根据所构造的图形提出一个结论,并证明之;
(3)如图3,其中AB是圆O的直径,AC是弦,D是
ABC
的中点,弦DE精英家教网⊥AB于点F.请找出点C和点E重合的条件,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图所示,在坐标平面上,L1为y=f(x)的一次函数图形,L2为y=g(x)的一次函数图形,L1、L2相交于P(3,3).若a>3,则下列叙述何者正确(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)动手操作:
如图①,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点c'处,折痕为EF,若∠ABE=20°,那么∠EFC'的度数为
 

(2)观察发现:
小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图②);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图③).小明认为△AEF是等腰三角形,你同意吗?请说明理由.
精英家教网
(3)实践与运用:
将矩形纸片ABCD 按如下步骤操作:将纸片对折得折痕EF,折痕与AD边交于点E,与BC边交于点F;将矩形ABFE与矩形EFCD分别沿折痕MN和PQ折叠,使点A、点D都与点F重合,展开纸片,此时恰好有MP=MN=PQ(如图④),求∠MNF的大小.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•高邮市二模)如图,半径为
3
cm的⊙O从斜坡上的A点处沿斜坡滚动到平地上的C点处,已知∠ABC=120°,AB=10cm,BC=20cm,那么圆心O运动所经过的路径长度为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,某人在塔顶的P处观测地平面上点C处,经测量∠P=35°,则他从P处观察C处的俯角是
 
度.

查看答案和解析>>

同步练习册答案