Ö±Ïßl¾­¹ýA£¨1£¬0£©ÇÒÓëË«ÇúÏßy=
m
x
(x£¾0)
ÔÚµÚÒ»ÏóÏÞ½»ÓÚµãB£¨2£¬1£©£¬¹ýµãP£¨p+1£¬p-1£©£¨p£¾1£©×÷xÖáµÄƽÐÐÏß·Ö±ð½»ÓÚË«ÇúÏßy=
m
x
(x£¾0)
ºÍy=-
m
x
£¨x£¼0£©ÓÚM£¬NÁ½µã£¬
£¨1£©ÇómµÄÖµ¼°Ö±ÏßlµÄ½âÎöʽ£»
£¨2£©Ö±Ïßy=-x-3ÓëxÖá¡¢yÖá·Ö±ð½»ÓÚµãC¡¢D£¬µãEÔÚÖ±Ïßy=-x-3ÉÏ£¬ÇÒµãEÔÚµÚÈýÏóÏÞ£¬Ê¹µÃ
CE
ED
=2
£¬Æ½ÒÆÏß¶ÎEDµÃÏß¶ÎHQ£¨µãEÓëH¶ÔÓ¦£¬µãDÓëQ¶ÔÓ¦£©£¬Ê¹µÃH¡¢QÇ¡ºÃ¶¼ÂäÔÚy=
m
x
µÄͼÏóÉÏ£¬ÇóH¡¢QÁ½µã×ø±ê£®
£¨3£©ÊÇ·ñ´æÔÚʵÊýp£¬Ê¹µÃS¡÷AMN=4S¡÷APM£¿Èô´æÔÚ£¬ÇóËùÓÐÂú×ãÌõ¼þµÄpµÄÖµ£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©½«µãB£¨2£¬1£©´úÈëy=
m
x
(x£¾0)
£¬¼´¿ÉÇó³ömµÄÖµ£¬´Ó¶øµÃµ½·´±ÈÀýº¯ÊýµÄ½âÎöʽ£»½«µãA£¨1£¬0£©£¬µãB£¨2£¬1£©·Ö±ð´úÈëy=kx+b£¬¼´¿ÉÇó³ölµÄ½âÎöʽ£»
£¨2£©¸ù¾ÝÌâÒâ¿ÉµÃDµãµÄºá×ø±ê±ÈEµãµÄºá×ø±ê´ó1£¬DµãµÄ×Ý×ø±ê±ÈEµãµÄ×Ý×ø±êС1£»¸ù¾ÝÆ½ÒÆµÄÐÔÖʿɵÃHµãµÄºá×ø±ê±ÈQµãµÄºá×ø±ê´ó1£¬HµãµÄ×Ý×ø±ê±ÈQµãµÄ×Ý×ø±êС1£¬¿ÉÉèHµãµÄ×ø±êΪ£¨u£¬v£©£¬±íʾ³öQµãµÄ×ø±ê£¬¸ù¾ÝH¡¢QÇ¡ºÃ¶¼ÂäÔÚy=
m
x
µÄͼÏóÉÏ£¬¿ÉµÃ·½³Ì×éÇó½â¼´¿É£»
£¨3£©ÓÉÓÚPµã×ø±êΪ£¨p+1£¬p-1£©£¬ÔòµãM¡¢NµÄ×Ý×ø±ê¶¼Îªp-1£¬µÃµ½M£¨
2
p-1
£¬p-1£©£¬N£¨-
2
p-1
£¬p-1£©£¬¿ÉµÃMN=
4
p-1
£¬¼ÆËã³öS¡÷AMN=
1
2
4
p-1
•£¨p-1£©=2£¬µ±p£¾1ʱ£¬S¡÷APM=
1
2
£¨p+1-
2
p-1
£©£¨p-1£©=
1
2
£¨p2-3£©£¬ÀûÓÃS¡÷AMN=4S¡÷APM£¬µÃµ½4¡Á
1
2
£¨p2-3£©=2£¬È»ºó½â·½³ÌµÃµ½p1=-
3
£¨²»ºÏÌâÒ⣬ÉáÈ¥£©£¬p2=
3
£®
½â´ð£º½â£º£¨1£©ÓɵãB£¨2£¬1£©ÔÚy=
m
x
ÉÏ£¬ÓÐ1=
m
2
£¬¼´m=2£®
ÉèÖ±ÏßlµÄ½âÎöʽΪy=kx+b£¬
ÓɵãA£¨1£¬0£©£¬µãB£¨2£¬1£©ÔÚy=kx+bÉÏ£¬
µÃ
k+b=0
2k+b=1
£¬
½âµÃ
k=1
b=-1
£¬
¹ÊËùÇóÖ±ÏßlµÄ½âÎöʽΪy=x-1£»

£¨2£©¡ßÖ±Ïßy=-x-3ÓëxÖá¡¢yÖá·Ö±ð½»ÓÚµãC¡¢D£¬µãEÔÚÖ±Ïßy=-x-3ÉÏ£¬ÇÒµãEÔÚµÚÈýÏóÏÞ£¬Ê¹µÃ
CE
ED
=2
£¬
¡àDµãµÄºá×ø±ê±ÈEµãµÄºá×ø±ê´ó1£¬DµãµÄ×Ý×ø±ê±ÈEµãµÄ×Ý×ø±êС1£»
¡àHµãµÄºá×ø±ê±ÈQµãµÄºá×ø±ê´ó1£¬HµãµÄ×Ý×ø±ê±ÈQµãµÄ×Ý×ø±êС1£¬
ÉèHµãµÄ×ø±êΪ£¨u£¬v£©£¬QµãµÄ×ø±ê£¨u+1£¬v-1£©£¬Ôò
uv=2
(u+1)(v-1)=2
£¬
½âµÃ
u1=1
v1=2
£¬
u2=-2
v2=-1
£¨²»ºÏÌâÒâÉáÈ¥£©£¬
ÔòHµãµÄ×ø±êΪ£¨1£¬2£©£¬QµãµÄ×ø±ê£¨2£¬1£©£»

£¨3£©´æÔÚ£®ÀíÓÉÈçÏ£º
¡ßPµã×ø±êΪ£¨p+1£¬p-1£©£¬MN¡ÎxÖᣬ
¡àµãM¡¢NµÄ×Ý×ø±ê¶¼Îªp-1£¬
¡àM£¨
2
p-1
£¬p-1£©£¬N£¨-
2
p-1
£¬p-1£©£¬¿ÉµÃMN=
4
p-1
£¬
¡àS¡÷AMN=
1
2
4
p-1
•£¨p-1£©=2£¬
µ±p£¾1ʱ£¬S¡÷APM=
1
2
£¨p+1-
2
p-1
£©£¨p-1£©=
1
2
£¨p2-3£©£¬
¡ßS¡÷AMN=4S¡÷APM£¬
¡à4¡Á
1
2
£¨p2-3£©=2£¬
½âµÃp1=-2£¨²»ºÏÌâÒ⣬ÉáÈ¥£©£¬p2=2£®
¡àÂú×ãÌõ¼þµÄpµÄֵΪ2£®
µãÆÀ£º±¾Ì⿼²éÁË·´±ÈÀýº¯Êý×ÛºÏÌ⣬ѧ»á´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ£¬Æ½ÒƵÄÐÔÖÊ£¬½â·½³Ì×éÒÔ¼°»á¼ÆËãÈý½ÇÐεÄÃæ»ýµÄ֪ʶ£®×¢ÒâµãÔÚ·´±ÈÀýº¯ÊýͼÏóÉÏ£¬µãµÄºá×Ý×ø±êÂú×ãÆä½âÎöʽ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

20¡¢¡¾¸½¼ÓÌâ¡¿ÒÑÖª¶þ´Îº¯Êýy=x2+2£¨m+1£©x-m+1£®
£¨1£©Ëæ×ÅmµÄ±ä»¯£¬¸Ã¶þ´Îº¯ÊýͼÏóµÄ¶¥µãPÊÇ·ñ¶¼ÔÚijÌõÅ×ÎïÏßÉÏ£¿Èç¹ûÊÇ£¬ÇëÇó³ö¸ÃÅ×ÎïÏߵĺ¯Êý±í´ïʽ£»Èç¹û²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®
£¨2£©Èç¹ûÖ±Ïßy=x+1¾­¹ý¶þ´Îº¯Êýy=x2+2£¨m+1£©x-m+1ͼÏóµÄ¶¥µãP£¬Çó´ËʱmµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Å̽õ£©Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Ö±Ïßl¾­¹ýÔ­µãO£¬ÇÒÓëxÖáÕý°ëÖáµÄ¼Ð½ÇΪ30¡ã£¬µãMÔÚxÖáÉÏ£¬¡ÑM°ë¾¶Îª2£¬¡ÑMÓëÖ±ÏßlÏཻÓÚA£¬BÁ½µã£¬Èô¡÷ABMΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬ÔòµãMµÄ×ø±êΪ
£¨2
2
£¬0£©»ò£¨-2
2
£¬0£©
£¨2
2
£¬0£©»ò£¨-2
2
£¬0£©
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•×Ô¹±£©ÒÑÖªÖ±Ïßl¾­¹ýµãA£¨1£¬0£©ÇÒÓëÖ±Ïßy=x´¹Ö±£¬ÔòÖ±ÏßlµÄ½âÎöʽΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ö±Ïßy=-x-3¾­¹ýµãC£¨1£¬m£©£¬²¢Óë×ø±êÖá½»ÓÚA¡¢BÁ½µã£¬¹ýB¡¢CÁ½µãµÄÅ×ÎïÏßy=x2+bx+cÓëxÖáµÄ¸º°ëÖá½»ÓÚDµã£¬
£¨1£©ÇóµãCµÄ×ø±ê¼°Å×ÎïÏߵĽâÎöʽ£»
£¨2£©Å×ÎïÏßy=x2+bx+cµÄ¶Ô³ÆÖáΪֱÏßMN£¬Ö±ÏßMNÓëxÖáÏཻÓÚµãF£¬Ö±ÏßMNÉÏÓÐÒ»¶¯µãP£¬¹ýP×÷Ö±ÏßPE¡ÍAB£¬´¹×ãΪE£¬Ö±ÏßPEÓëxÖáÏཻÓÚµãH
¢Ùµ±PµãÔÚÖ±ÏßMNÉÏÒÆ¶¯Ê±£¬ÊÇ·ñ´æÔÚÕâÑùµÄPµã£¬Ê¹ÒÔA¡¢P¡¢HΪ¶¥µãµÄÈý½ÇÐÎÓë¡÷FBCÏàËÆ£¿Èô´æÔÚ£¬ÇëÇó³öPµãµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
¢ÚÈô¡ÑIʼÖÕ¹ýA¡¢P¡¢EÈýµã£¬µ±PµãÔÚMNÉÏÔ˶¯Ê±£¬Ô²ÐÄIÔÚ
C
C
ÉÏÔ˶¯£®£¨ÏÈ×÷Ñ¡Ôñ£¬ÔÙ˵Ã÷ÀíÓÉ£© 
A£®Ò»¸öÔ²¡¡¡¡ B£®Ò»¸ö·´±ÈÀýº¯ÊýͼÏó¡¡¡¡C£®Ò»ÌõÖ±Ïß¡¡¡¡D£®Ò»ÌõÅ×ÎïÏß

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ1£¬ÔÚ¡÷ABCÖУ¬¡ÏACB=2¡ÏB£¬¡ÏBACµÄƽ·ÖÏßAO½»BCÓÚµãD£¬µãHΪAOÉÏÒ»¶¯µã£¬¹ýµãH×÷Ö±Ïßl¡ÍAOÓÚH£¬·Ö±ð½»Ö±ÏßAB¡¢AC¡¢BCÓÚµãN¡¢E¡¢M£®
£¨1£©µ±Ö±Ïßl¾­¹ýµãCʱ£¨Èçͼ2£©£¬Ö¤Ã÷£ºBN=CD£»
£¨2£©µ±MÊÇBCÖеãʱ£¬Ð´³öCEºÍCDÖ®¼äµÄµÈÁ¿¹ØÏµ£¬²¢¼ÓÒÔÖ¤Ã÷£»
£¨3£©ÇëÖ±½Óд³öBN¡¢CE¡¢CDÖ®¼äµÄµÈÁ¿¹ØÏµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸