精英家教网 > 初中数学 > 题目详情
精英家教网如图所示,在平行四边形ABCD中,∠ABC的角平分线分别交AC,AD于E,F点,EG⊥BC,若BA=6,AC=8,AD=10.
(1)求FD的长;
(2)求△BEC的面积.
分析:(1)由题中线段的长度,根据勾股定理可判定△ABC为直角三角形,∠BAC=90°,再由平行四边形的性质及角平分线可推出AB=AF=6,则FD可求.
(2)由平行四边形的性质可证昨△AEF∽△CEB,利用相似比可求出EC的长,则AE的长可求,根据角平分线上的点到角的两边的距离相等,则EG=AE,△BEC的面积可求.
解答:解:(1)∵平行四边形ABCD,
∴BC=AD=10,AB=CD=6,AD∥BC,
在△ABC中,BA=6,AC=8,BC=10,由勾股定理的逆定理得BA2+AC2=BC2
∴△ABC为Rt△,∠BAC=90°,
∵AD∥BC,
∴∠CBF=∠AFB,∠DAE=∠BCE,
又∵BF平分∠ABC,
∴∠ABF=∠CBF,
∴∠ABF=∠AFB,
∴AF=AB=6(等角对等边),
∴FD=AD-AF=10-6=4.

(2)由(1)知△AEF∽△CEB,
∴AF:BC=AE:EC,
∴AF:(AF+BC)=AE:(AE+EC)即6:(6+10)=AE:8,
∴AE=3
∵E是∠ABC的平分线BF上的点,EG⊥BC,EA⊥AB,
∴EG=AE=3,
S△BEC=
1
2
×10×3=15.
点评:本题主要考查了平行四边形的性质,勾股定理的逆定理,角平分线上的点、相似三角形等内容,比较复杂.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,在矩形ABCD中AB=12,AC=20,两条对角线相交于点O.以OB、OC为邻边作第1个平行四边形OBB1C,对角线相交于点A1;再以A1B1、A1C为邻边作第2个平行四边形A1B1C1C,对角线相交于点O1;再以O1B1,O1C1为邻边作第3个平行四边形O1B1B2C1;…以此类推.
(1)矩形ABCD的面积为
192
192

(2)第1个平行四边行OBB1C的面积为
96
96

第2个平行四边形A1B1C1C的面积为
48
48

(3)第n个平行四边形的面积为
192×(
1
2
)n
(或
192
2n
192×(
1
2
)n
(或
192
2n

查看答案和解析>>

科目:初中数学 来源:数学教研室 题型:022

已知如图所示,在平行四边ABCD中,对角线相交于点O,已知AB=24cm,BC=18cm,△AOB的周长是54cm那么△AOD的周长是________cm.

查看答案和解析>>

科目:初中数学 来源: 题型:022

已知如图所示,在平行四边ABCD中,对角线相交于点O,已知AB=24cm,BC=18cm,△AOB的周长是54cm那么△AOD的周长是________cm.

查看答案和解析>>

科目:初中数学 来源: 题型:022

如图所示,在平行四边行ABCD中,AD=3,∠DAB=60°,B点坐标为(3,0).则A、D、C三点的坐标分别为A________、D________、C________.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图所示,在矩形ABCD中AB=12,AC=20,两条对角线相交于点O.以OB、OC为邻边作第1个平行四边形OBB1C,对角线相交于点A1;再以A1B1、A1C为邻边作第2个平行四边形A1B1C1C,对角线相交于点O1;再以O1B1,O1C1为邻边作第3个平行四边形O1B1B2C1;…以此类推.
(1)矩形ABCD的面积为______;
(2)第1个平行四边行OBB1C的面积为______;
第2个平行四边形A1B1C1C的面积为______;
(3)第n个平行四边形的面积为______.

查看答案和解析>>

同步练习册答案