精英家教网 > 初中数学 > 题目详情

在①2x-1  ②2x+1=3x  ③|π-3|=π-3  ④t+1=3中,代数式有________,等式有________,方程有________(填入式子的序号).

答案:
解析:

①,②③④,②④.


练习册系列答案
相关习题

科目:初中数学 来源:初中数学 三点一测丛书 八年级数学 下 (江苏版课标本) 江苏版 题型:044

题目:解方程

解:方程两边同乘以(x+2)(x-2)得     (A)

(x+2)(x-2)=-·(x+2)(x-2).

化简,得(x-2)+4x=2(x+2).       (B)

去括号,移项,得x-2+4x-2x-4=0.   (C)

解这个方程得x=2.            (D)

∴x=2是原方程的解.           (E)

问题:(1)上述过程是否正确?答________.

(2)若有错误,错在________.

(3)该步错误的原因是________.

(4)该步改正为________.

查看答案和解析>>

科目:初中数学 来源:三点一测丛书 九年级数学 上 (江苏版课标本) 江苏版课标本 题型:044

矩形仓库的多种设计方案

  实践与探索课上,老师布置了这样一道题:

  有100米长的篱笆材料,想围成一矩形露天仓库,要求面积不小于600平方米,在场地的北面有一堵长50米的旧墙.有人用这个篱笆围一个长40米,宽10米的矩形仓库,但面积只有400平方米,不合要求.现在请你设计矩形仓库的长和宽,使它符合要求.

  经过同学们一天的实践与思考,老师收到了如下几种设计方案:

  (1)如果设矩形的宽为x米,则用于长的篱笆为=(50-x)米,这时面积S=x(50-x).

  当S=600时,由x(50-x)=600,得x2-50x+600=0,解得x1=20,x2=30.

  检验后知x=20符合要求.

  (2)根据在周长相等的条件下,正方形面积大于矩形面积,所以设计成正方形仓库,它的边长为x米,则4x=100,x=25.这时面积达到625米,当然符合要求.

  (3)如果利用场地北面的那堵旧墙,取矩形的长与旧墙平行,设与墙垂直的矩形一边长为x米,则另一边为100-2x,如图.

  因为旧墙长50米,所以100-2x≤50.即x≥25米.若S=600平方米,则由x(100-2x)=600,即x2-50x+300=0,解得x1=25+,x2=25-.根据x≥25,舍去x2=25-

  所以,利用旧墙,取矩形垂直于旧墙一边长为25+米(约43米),另一边长约14米,符合要求.

  (4)如果充分利用北面旧墙,即矩形一边是50米旧墙时,用100米篱笆围成矩形仓库,则矩形另一边长为25米,这时矩形面积为S=50×25=1250(平方米).即面积可达1250平方米,符合设计要求.

还可以有其他一些符合要求的设计方案.请你试试看.

查看答案和解析>>

科目:初中数学 来源:数学教研室 题型:013

用篱笆围成一个长方形的花坛,其中一面靠墙,且在与墙平行的一边开了一个一米宽的门,如果墙长15米,现有能围成32米长的篱笆,花坛的面积需要130平方米,求花坛的长和宽.如果设垂直于墙的边长为x千米,可列出的方程为(   

Ax(3212x)130                       Bx·130

Cx·130                      Dx(3212x)130

 

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读:我们知道,在数轴x=1表示一个点,而在平面直角坐标系中x=1表示一条直线;我们还知道,以二元一次方程2 x – y + 1 = 0的所有解为坐标的点组成的图形就是一次函数y=2x-1的图象,它也是一条直线如图①。

观察图①可以解出,直线x=1现直线y = 2 x -1的交点P的坐标(1,3),就是方程组 的解,所以这个方程组的解为

在直角坐标系中,x≤1表示一个平面区域,即直线x = 1以及它左侧的部分,如图②;y≤2 x + 1也表示一个平面区域,即直线y = 2 x+1以及它下方的部分,如图③。                     

              

      (1,3)

   O 1   x         1   

                    

  (图①)           (图②)          (图③)                           

回答下列问题:

(1)在直角坐标系(图④)中,用作图象的方法求出方程组 的解;

(2)用阴影表示 所围成的区域。

     

查看答案和解析>>

同步练习册答案