精英家教网 > 初中数学 > 题目详情

阅读材料:如果一元二次方程ax2+bx+c=0(a≠0)的两个实数根分别是x1、x2,那么数学公式.借助该材料完成下列各题:
(1)若x1、x2是方程数学公式的两个实数根,x1+x2=______;x1•x2=______.
(2)若x1、x2是方程2x2+6x-3=0的两个实数根,数学公式=______;数学公式=______.
(3)若x1、x2是关于x的方程x2-(m-3)x+m+8=0的两个实数根,且数学公式,求m的值.

解:(1)∵x1、x2是方程的两个实数根,
∴x1+x2=-=4,x1•x2==
故答案是:4,

(2)∵x1、x2是方程2x2+6x-3=0的两个实数根,
∴x1+x2==3,x1•x2==-
===-2,=(x1+x22-2x1•x2=32-2×(-)=12.
故答案是:-2,12;

(3)∵关于x的方程x2-(m-3)x+m+8=0有两个实数根,
∴△=(m-3)2-4(m+8)≥0,即m≥5+4,或m≤5-4
∵x1、x2是关于x的方程x2-(m-3)x+m+8=0的两个实数根,
∴x1+x2=m-3,x1•x2=m+8,
=(x1+x22-2x1•x2=13,即(m-3)2-2(m+8)=13,
解得,m=-2或m=10.
即m的值是-2或10.
分析:(1)、(2)根据根与系数的关系:,来解题.
(3)首先根据根的判别式求得m的取值范围,然后由根与系数的关系来求m的值.
点评:此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读下面材料:
若设关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,那么由根与系数的关系得:x1+x2=-
b
a
,x1x2=
c
a
.∵
b
a
=-(x1+x2)
c
a
=x1x2
,∴ax2+bx+c=a(x2+
b
a
x+
c
a
)
=a[x2-(x1+x2)x+x1x2]=a(x-x1)(x-x2).于是,二次三项式就可以分解因式ax2+bx+c=a(x-x1)(x-x2).
(1)请用上面的方法将多项式4x2+8x-1分解因式.
(2)判断二次三项式2x2-4x+7在实数范围内是否能利用上面的方法因式分解,并说明理由.
(3)如果关于x的二次三项式mx2-2(m+1)x+(m+1)(1-m)能用上面的方法分解因式,试求出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读下面材料:
若设关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,那么由根与系数的关系得:x1+x2=-数学公式,x1x2=数学公式.∵数学公式数学公式,∴数学公式=a[x2-(x1+x2)x+x1x2]=a(x-x1)(x-x2).于是,二次三项式就可以分解因式ax2+bx+c=a(x-x1)(x-x2).
(1)请用上面的方法将多项式4x2+8x-1分解因式.
(2)判断二次三项式2x2-4x+7在实数范围内是否能利用上面的方法因式分解,并说明理由.
(3)如果关于x的二次三项式mx2-2(m+1)x+(m+1)(1-m)能用上面的方法分解因式,试求出m的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

阅读下面材料:
若设关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,那么由根与系数的关系得:x1+x2=-
b
a
,x1x2=
c
a
.∵
b
a
=-(x1+x2)
c
a
=x1x2
,∴ax2+bx+c=a(x2+
b
a
x+
c
a
)
=a[x2-(x1+x2)x+x1x2]=a(x-x1)(x-x2).于是,二次三项式就可以分解因式ax2+bx+c=a(x-x1)(x-x2).
(1)请用上面的方法将多项式4x2+8x-1分解因式.
(2)判断二次三项式2x2-4x+7在实数范围内是否能利用上面的方法因式分解,并说明理由.
(3)如果关于x的二次三项式mx2-2(m+1)x+(m+1)(1-m)能用上面的方法分解因式,试求出m的取值范围.

查看答案和解析>>

科目:初中数学 来源:四川省月考题 题型:解答题

阅读下面材料:若设关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2
那么由根与系数的关系得:x1+x2=﹣,x1x2=

=a[x2﹣(x1+x2)x+x1x2]=a(x﹣x1)(x﹣x2).
于是,二次三项式就可以分解因式ax2+bx+c=a(x﹣x1)(x﹣x2).
(1)请用上面的方法将多项式4x2+8x﹣1分解因式.
(2)判断二次三项式2x2﹣4x+7在实数范围内是否能利用上面的方法因式分解,并说明理由.
(3)如果关于x的二次三项式mx2﹣2(m+1)x+(m+1)(1﹣m)能用上面的方法分解因式,试求出m的取值范围.

查看答案和解析>>

科目:初中数学 来源:2010-2011学年四川省内江市隆昌三中九年级(上)第一次月考数学试卷(解析版) 题型:解答题

阅读下面材料:
若设关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,那么由根与系数的关系得:x1+x2=-,x1x2=.∵,∴=a[x2-(x1+x2)x+x1x2]=a(x-x1)(x-x2).于是,二次三项式就可以分解因式ax2+bx+c=a(x-x1)(x-x2).
(1)请用上面的方法将多项式4x2+8x-1分解因式.
(2)判断二次三项式2x2-4x+7在实数范围内是否能利用上面的方法因式分解,并说明理由.
(3)如果关于x的二次三项式mx2-2(m+1)x+(m+1)(1-m)能用上面的方法分解因式,试求出m的取值范围.

查看答案和解析>>

同步练习册答案