精英家教网 > 初中数学 > 题目详情

如图(1)所示为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图(2)所示.已知展开图中每个正方形的边长为1.

(1)求在该展开图中可画出最长线段的长度?这样的线段可画几条?

(2)试比较立体图中与平面展开图中的大小关系?

 

【答案】

(1),4条(2)相等

【解析】解:(1)在平面展开图中可画出最长的线段长为

························· 1分

如图(1)中的,在

,由勾股定理得:

······ 3分

答:这样的线段可画4条(另三条用虚线标出).··· 4分

(2)立体图中为平面等腰直角三角形的一锐角,

.················· 5分

在平面展开图中,连接线段,由勾股定理可得:

.············· 7分

由勾股定理的逆定理可得为直角三角形.

为等腰直角三角形.··········· 8分

.················ 9分

所以相等. 10分

 

(1)利用勾股定理求得在平面展开图中可画出最长的线段长为,由图可知这样的线段可画4条

(2)立体图中为平面等腰直角三角形的一锐角,是,在平面展开图中,连接线段,由勾股定理可得,,由勾股定理的逆定理可得为直角三角形,又,得, 即可得出相等

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图(1)所示,一张平行四边形纸片ABCD,AB=10,AD=6,BD=8,沿对角线BD把这张纸片剪成△AB1D1和△CB2D2两个三角形(如图(2)所示),将△AB1D1沿直线AB1方向移动(点B2始终在AB1上,AB1与CD2始终保持平行),当点A与B2重合时停止平移,在平移过程中,AD1与B2D2交于点E,B2C与B1D1交于点F,
(1)当△AB1D1平移到图(3)的位置时,试判断四边形B2FD1E是什么四边形?并证明你的结论;
(2)设平移距离B2B1为x,四边形B2FD1E的面积为y,求y与x的函数关系式;并求出四边形B2FD1E的面积的最大值;
(3)连接B1C(请在图(3)中画出).当平移距离B2B1的值是多少时,△B1B2F与△B1CF相似?
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示为一上细下粗的容器,上部横截面积为S,下部横截面积为2S,内有密度为ρ的液体,容器的底部有高为h的气泡,当气泡上升,从细部升出液面时(液面仍在细部),重力所做的功为___________.

查看答案和解析>>

科目:初中数学 来源:贵州省中考真题 题型:解答题

如图(1)所示,一张平行四边形纸片ABCD,AB=10,AD=6,BD=8,沿对角线BD把这张纸片剪成△AB1D1和△CB2D2两个三角形(如图(2)所示),将△AB1D1沿直线AB1方向移动(点B2始终在AB1上,AB1与CD2始终保持平行),当点A与B2重合时停止平移,在平移过程中,AD1与B2D2交于点E,B2C与B1D1交于点F。
(1)当△AB1D1平移到图(3)的位置时,试判断四边形B2FD1E是什么四边形?并证明你的结论;
(2)设平移距离B2B1为x,四边形B2FD1E的面积为y,求y与x的函数关系式;并求出四边形B2FD1E的面积的最大值;
(3)连结B1C(请在图(3)中画出)。当平移距离B2B1的值是多少时,△B1B2F与△B1CF相似?

查看答案和解析>>

科目:初中数学 来源:2011年贵州省遵义市凤冈县石径中学中考数学模拟试卷(解析版) 题型:解答题

如图(1)所示,一张平行四边形纸片ABCD,AB=10,AD=6,BD=8,沿对角线BD把这张纸片剪成△AB1D1和△CB2D2两个三角形(如图(2)所示),将△AB1D1沿直线AB1方向移动(点B2始终在AB1上,AB1与CD2始终保持平行),当点A与B2重合时停止平移,在平移过程中,AD1与B2D2交于点E,B2C与B1D1交于点F,
(1)当△AB1D1平移到图(3)的位置时,试判断四边形B2FD1E是什么四边形?并证明你的结论;
(2)设平移距离B2B1为x,四边形B2FD1E的面积为y,求y与x的函数关系式;并求出四边形B2FD1E的面积的最大值;
(3)连接B1C(请在图(3)中画出).当平移距离B2B1的值是多少时,△B1B2F与△B1CF相似?

查看答案和解析>>

科目:初中数学 来源:2008年全国中考数学试题汇编《图形的相似》(03)(解析版) 题型:解答题

(2008•遵义)如图(1)所示,一张平行四边形纸片ABCD,AB=10,AD=6,BD=8,沿对角线BD把这张纸片剪成△AB1D1和△CB2D2两个三角形(如图(2)所示),将△AB1D1沿直线AB1方向移动(点B2始终在AB1上,AB1与CD2始终保持平行),当点A与B2重合时停止平移,在平移过程中,AD1与B2D2交于点E,B2C与B1D1交于点F,
(1)当△AB1D1平移到图(3)的位置时,试判断四边形B2FD1E是什么四边形?并证明你的结论;
(2)设平移距离B2B1为x,四边形B2FD1E的面积为y,求y与x的函数关系式;并求出四边形B2FD1E的面积的最大值;
(3)连接B1C(请在图(3)中画出).当平移距离B2B1的值是多少时,△B1B2F与△B1CF相似?

查看答案和解析>>

同步练习册答案