精英家教网 > 初中数学 > 题目详情
如图,四边形ABCD中,AD∥BC,点E在CB的延长线上,连接DE,交AB于点F,连接DB,∠AFD=∠DBE,且DE2=BE•CE.
(1)求证:∠DBE=∠CDE;
(2)当BD平分∠ABC时,求证:四边形ABCD是菱形.

【答案】分析:(1)先把等积式:DE2=BE•CE化为比例式,利用两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似证明△DBE∽△CDE即可证明∠DBE=∠CDE;
(2)有(1)可知:∠DBE=∠CDE,利用角平分线的性质和平行线的判定以及平行四边形的判定方法证明四边形ABCD为平行四边形,再证明AB=AD即可证明:四边形ABCD是菱形.
解答:证明:(1)∵DE2=BE•CE,
.    
∵∠E=∠E,
∴△DBE∽△CDE.
∴∠DBE=∠CDE. 

(2)∵∠DBE=∠CDE,
又∵∠DBE=∠AFD,
∴∠CDE=∠AFD.
∴AB∥DC.       
又∵AD∥BC,
∴四边形ABCD是平行四边形 
∵AD∥BC,
∴∠ADB=∠1.       
∵DB平分∠ABC,
∴∠1=∠2.            
∴∠ADB=∠2.
∴AB=AD.        
∴四边形ABCD是菱形.
点评:本题综合性的考查了相似三角形的判定、相似三角形的性质、角平分线的性质、平行线的判定和性质以及平行四边形的判定、性质和菱形的判定方法,题目的综合性不小.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案