精英家教网 > 初中数学 > 题目详情
如图,已知抛物线y=-
1
2
x2+c
的内部有正方形ABCD正方形EFGH正方形MNPQ,其中每个正方形均有两个顶点在抛物线上,已知正方形ABCD的边长为3,则正方形MNPQ的边长为
17
-4
17
-4
分析:根据题意求出C、D的坐标,代入抛物线求出c,设正方形EFGH的边长是2a,正方形MNPQ的边长是2b,得出H、Q的坐标,代入抛物线,能求出b的值,即可求出答案.
解答:解:根据题意得:C的坐标是(-
3
2
,3),D的坐标是(
3
2
,3),
代入y=-
1
2
x2+c得:3=-
1
2
×(
3
2
)
2
+c,
解得:c=
33
8

∴抛物线的解析式是y=-
1
2
x2+
33
8

设正方形EFGH的边长是2a,正方形MNPQ的边长是2b,
则H(a,3+2a),Q(b,3+2a+2b),
代入抛物线得:
3+2a=-
1
2
a2+
33
8

a=
1
2

3+2a+2b=-
1
2
b2+
33
8

b=
-4+
17
2

∴正方形MNPQ的边长是2b=-4+
17
=
17
-4,
故答案为:
17
-4.
点评:本题考查了二次函数图象上点的坐标特征和正方形的性质的应用,通过做此题能培养学生分析问题的能力,同时培养了学生观察能力和计算能力,是一道比较好的计算题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线与x轴交于A(-1,0)、B(4,0)两点,与y轴交于点精英家教网C(0,3).
(1)求抛物线的解析式;
(2)求直线BC的函数解析式;
(3)在抛物线上,是否存在一点P,使△PAB的面积等于△ABC的面积,若存在,求出点P的坐标,若不存在,请说明理由.
(4)点Q是直线BC上的一个动点,若△QOB为等腰三角形,请写出此时点Q的坐标.(可直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)精英家教网、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•衡阳)如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=-1.
(1)求抛物线对应的函数关系式;
(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPQ为矩形;
②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)点P是抛物线对称轴上一点,若△PAB∽△OBC,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c的顶点是(-1,-4),且与x轴交于A、B(1,0)两点,交y轴于点C;
(1)求此抛物线的解析式;
(2)①当x的取值范围满足条件
-2<x<0
-2<x<0
时,y<-3;
     ②若D(m,y1),E(2,y2)是抛物线上两点,且y1>y2,求实数m的取值范围;
(3)直线x=t平行于y轴,分别交线段AC于点M、交抛物线于点N,求线段MN的长度的最大值;
(4)若以抛物线上的点P为圆心作圆与x轴相切时,正好也与y轴相切,求点P的坐标.

查看答案和解析>>

同步练习册答案