精英家教网 > 初中数学 > 题目详情

如图,直线AB与轴相交于点A(1,0),则直线AB绕点A旋转90°后所得到的直线解析式可能是(    )

A.                                                  B.

C.                                                 D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在如图所示的直角坐标系中,点C在y轴的正半轴上,四边形OABC为平行四边形,OA=2,∠AOC=60°,以OA为直径的⊙P经过点C,点D在y轴上,DM为始终与y轴垂直且与AB边相交的动直线,设DM与AB边的交点为M(点M在线段AB上,但与精英家教网A、B两点不重合),点N是DM与BC的交点,设OD=t;
(1)求点A和B的坐标;
(2)设△BMN的外接圆⊙G的半径为R,请你用t表示R及点G的坐标;
(3)当⊙G与⊙P相外切时,求直角梯形OAMD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•南通二模)如图,已知直线y=
12
x+2
分别交x轴、y轴于A、B两点,将△OAB绕坐标原点O顺时针旋转90°得到△OCD.抛物线y=ax2+bx+c经过A、C、D三点.
(1)求这条抛物线的解析式;
(2)若将该抛物线向下平移m(m>0)个单位长度,使得顶点落在△OAB内部(不包含△OAB的各条边)时,求m的取值范围;
(3)设直线AB与该抛物线的另一个交点为Q,若在x轴上方的抛物线上存在相异的两点P1、P2,使△P1AQ与△P2AQ的面积相等,且等于t,求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知直线数学公式分别交x轴、y轴于A、B两点,将△OAB绕坐标原点O顺时针旋转90°得到△OCD.抛物线y=ax2+bx+c经过A、C、D三点.
(1)求这条抛物线的解析式;
(2)若将该抛物线向下平移m(m>0)个单位长度,使得顶点落在△OAB内部(不包含△OAB的各条边)时,求m的取值范围;
(3)设直线AB与该抛物线的另一个交点为Q,若在x轴上方的抛物线上存在相异的两点P1、P2,使△P1AQ与△P2AQ 的面积相等,且等于t,求t的取值范围.

查看答案和解析>>

科目:初中数学 来源:2013年江苏省中考数学预测试卷(八)(解析版) 题型:解答题

如图,已知直线分别交x轴、y轴于A、B两点,将△OAB绕坐标原点O顺时针旋转90°得到△OCD.抛物线y=ax2+bx+c经过A、C、D三点.
(1)求这条抛物线的解析式;
(2)若将该抛物线向下平移m(m>0)个单位长度,使得顶点落在△OAB内部(不包含△OAB的各条边)时,求m的取值范围;
(3)设直线AB与该抛物线的另一个交点为Q,若在x轴上方的抛物线上存在相异的两点P1、P2,使△P1AQ与△P2AQ 的面积相等,且等于t,求t的取值范围.

查看答案和解析>>

科目:初中数学 来源:2012年江苏省南通市中考数学二模试卷(解析版) 题型:解答题

如图,已知直线分别交x轴、y轴于A、B两点,将△OAB绕坐标原点O顺时针旋转90°得到△OCD.抛物线y=ax2+bx+c经过A、C、D三点.
(1)求这条抛物线的解析式;
(2)若将该抛物线向下平移m(m>0)个单位长度,使得顶点落在△OAB内部(不包含△OAB的各条边)时,求m的取值范围;
(3)设直线AB与该抛物线的另一个交点为Q,若在x轴上方的抛物线上存在相异的两点P1、P2,使△P1AQ与△P2AQ 的面积相等,且等于t,求t的取值范围.

查看答案和解析>>

同步练习册答案