精英家教网 > 初中数学 > 题目详情

如图,已知在△ABC中,∠BAC=90°,AB=AC,点D在边BC上,以AD为边作正方形ADEF,联结CF,CE.
(1)求证:FC⊥BC;
(2)如果BD=AC,求证:CD=CE.

证明:(1)∵四边形ADEF是正方形,
∴AD=AF,∠FAD=90°=∠BAC,
∴∠FAD-∠DAC=∠BAC-∠DAC,
∴∠FAC=∠BAD,
在△ABD和△ACF中

∴△ABD≌△ACF(SAS),
∴∠B=∠FCA,
∵∠BAC=90°,
∴∠B+∠ACB=90°,
∴∠ACB+∠ACF=90°,
∴FC⊥BC.

(2)∵△ABD≌△ACF,
∴BD=CF,
∵BD=AC,
∴AC=CF,
∴∠CAF=∠CFA,
∵四边形ADEF是正方形,
∴AD=EF,∠DAF=∠EFA=90°,
∴∠DAF-∠CAF=∠EFA-∠CFA,
∴∠DAC=∠EFC,
在△DAC和△EFC中

∴△DAC≌△EFC(SAS),
∴CD=CE.
分析:(1)根据正方形的性质得出AD=AF,∠FAD=90°=∠BAC,求出∠FAC=∠BAD,证出△ABD≌△ACF,推出∠B=∠FCA即可;
(2)根据△ABD≌△ACF,推出BD=CF=AC,求出∠DAC=∠EFC,根据SAS推出△DAC≌△EFC即可.
点评:本题考查了正方形性质,全等三角形的性质和判定,等腰直角三角形性质的应用,主要考查学生综合运用定理进行推理的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,已知在△ABC中,AD、AE分别是BC边上的高和中线,AB=9cm,AC=7cm,BC=8m,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,PN⊥CD于N,求证:PM=PN.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,AB=AC,∠A=100°,CD是∠ACB的平分线.
(1)∠ADC=
60°
60°

(2)求证:BC=CD+AD.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,∠B与∠C的平分线交于点P.当∠A=70°时,则∠BPC的度数为
125°
125°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,CD=CE,∠A=∠ECB,试说明CD2=AD•BE.

查看答案和解析>>

同步练习册答案