精英家教网 > 初中数学 > 题目详情

如图,直线经过点B(,2),且与x轴交于点A.将抛物线沿x轴作左右平移,记平移后的抛物线为C,其顶点为P.

(1)求∠BAO的度数;

(2)抛物线C与y轴交于点E,与直线AB交于两点,其中一个交点为F,当线段EF∥x轴时,求平移后的抛物线C对应的函数关系式;

(3)在抛物线平移过程中,将△PAB沿直线AB翻折得到△DAB,点D能否落在抛物线C上?如能,求出此时抛物线C顶点P的坐标;如不能,说明理由.

 

【答案】

解:(1)∵点B在直线AB上,求得b=3,

∴直线AB:,  

∴A(,0),即OA=

作BH⊥x轴,垂足为H.则BH=2,OH=,AH=

 . 

(2)设抛物线C顶点P(t,0),则抛物线C:, 

∴E(0,

∵EF∥x轴,∴点E、F关于抛物线C的对称轴对称, ∴F(2t,).

∵点F在直线AB上, 

∴抛物线C为

(3)假设点D落在抛物线C上,

不妨设此时抛物线顶点P(t,0),则抛物线C:,AP=+ t,

连接DP,作DM⊥x轴,垂足为M.由已知,得△PAB≌△DAB,

又∠BAO=30°,∴△PAD为等边三角形.PM=AM=

 

∵点D落在抛物线C上,

 

时,此时点P,点P与点A重合,不能构成三角形,不符合题意,舍去.所以点P为(,0)  ∴当点D落在抛物线C上顶点P为(,0). 

【解析】(1)先根据题意求出b的值,得到直线AB的解析式,再求出直线与x轴的交点A的坐标,即可求出OA的长,作BH⊥x轴,垂足为H,即可求出BH、OH、AH的长,从而得到结果;

(2)先根据顶点式设出抛物线解析式,即可表示出点E的坐标,再由EF∥x轴,可知点E、F关于抛物线C的对称轴对称,从而可以表示出点F的坐标,再根据点F在直线AB上即可求出结果;

(3)先假设点D落在抛物线C上,根据顶点式设出解析式,证得△PAB≌△DAB,可得△PAD为等边三角形,再根据等边三角形的性质及抛物线特征即可得到结果。

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,直线l经过点A(4,0)和点B(0,4),且与二次函数y=ax2的图象在第一象限内相交于点P,若△AOP的面积为
92
,求二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直线l经过点M(3,0),且平行于y轴,与抛物线y=ax2交于点N,若S△OMN=9,则a的值是(  )
A、
2
3
B、-
2
3
C、
1
3
D、-
1
3

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直线l经过点A(-3,1)、B(0,-2),将该直线向右平移2个单位得到直线l′.
(1)在图中画出直线l′的图象;
(2)求直线l′的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•赤峰)如图,直线L经过点A(0,-1),且与双曲线c:y=
mx
交于点B(2,1).
(1)求双曲线c及直线L的解析式;
(2)已知P(a-1,a)在双曲线c上,求P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•天河区一模)如图,直线l经过点A(1,0),且与曲线y=
m
x
(x>0)交于点B(2,1).过点P(p,p-1)(p≥2)作x轴的平行线分别交曲线y=
m
x
(x>0)和y=-
m
x
(x<0)于M,N两点.
(1)求m的值及直线l的解析式;
(2)是否存在实数p,使得S△AMN=4S△APM?若存在,请求出所有满足条件的p的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案