精英家教网 > 初中数学 > 题目详情
正方形ABCD中,P为AB边上任一点,AE⊥DP于E,点F在DP的延长线上,且DE=EF,连接AF、BF,∠BAF的平分线交DF于G,连接GC.
(1)求证:△AEG是等腰直角三角形;
(2)求证:AG+CG=
(3)若AB=2,P为AB的中点,求BF的长.

【答案】分析:(1)由条件可以得出∠F=∠PAE,再由直角三角形的性质两锐角互余及角平分线的性质就可以得出2∠GAP+2∠PAE=90°,从而求出结论;
(2)如图2,作CH⊥DP,交DP于H点,可以得出△ADE≌△DCH根据全等三角形的性质就可以得出△GHC是等腰直角三角形,由其性质就可以得出CG=GH,AG=EG,再根据线段转化就看以得出结论;
(3)如图3,延长DF,CB交于点K,根据正方形的性质可以得出△ADP≌△BKP,再由勾股定理就可以得出F是KG的中点,由三角形的中位线的性质就可以求出结论.
解答:(1)证明:如图1,∵DE=EF,AE⊥DP,
∴AF=AD,
∴∠F=∠ADF,
∵∠ADF+∠DAE=∠PAE+∠DAE=90°,
∴∠F=∠PAE,
∵DF平分∠BAF,
∴∠FAG=∠GAP.
∵∠F+∠FAE=90°,
∴∠F+∠PAE+∠FAP=90°
∴2∠GAP+2∠PAE=90°,
即∠GAE=45°,
∴△AGE为等腰直角三角形;

(2)证明:如图2,作CH⊥DP,交DP于H点,
∴∠DHC=90°.
∵AE⊥DP,
∴∠AED=90°,
∴∠AED=∠DHC.
∵∠ADE+∠CDH=90°,∠CDH+∠DCH=90°,
∴∠ADE=∠DCH.
∵在△ADE和△DCH中,

∴△ADE≌△DCH(AAS),
∴CH=DE,DH=AE=EG.
∴EH+EG=EH+HD,
即GH=ED,
∴GH=CH.
∴CG=GH.
∵AG=EG,
∴AG=DH,
∴CG+AG=GH+HD,
∴CG+AG=(GH+HD),
即CG+AG=DG;

(3)如图3,延长DF,CB交于点K,
∵P是AB的中点,
∴AP=BP=1.
∵四边形ABCD是正方形,
∴AD=AB=BC=CD,∠DAB=∠ABC=∠ABK=90°.
∵在△ADP和△BKP中

∴△ADP≌△BKP(AAS),
∴AD=KB=BC=2.
在Rt△ADP中由勾股定理,得
PD=
AE=PA•AD,
∴AE=,DE=
∴EG=,DF=
∴FG=
在Rt△KCD中,由勾股定理,得
KD=2
∴KF=
∴KF=FG,
∵KB=BC,
∴FB∥CG,BF=CG,
∴BF=CH=AD=
点评:本题考查了等腰三角形的性质的运用,直角三角形的性质的运用,勾股定理的运用,全等三角形的判定及性质的运用,正方形的性质的运用,三角形的中位线的判定及性质的运用,解答时合理运用全等是重点,运用三角形的中位线的性质求解是难点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•临沂)如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

在正方形ABCD中,M为AD中点,N为CD中点,试求tan∠MBN的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

在边长为1的正方形ABCD中,点M、N、O、P分别在边AB、BC、CD、DA上.如果AM=BM,DP=3AP,则MN+NO+OP的最小值是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在正方形ABCD中,画2个半径为a的四分之一圆,用代数式表示阴影部分的面积为
2a2-
1
2
πa2
2a2-
1
2
πa2
(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在正方形ABCD中,AB=4,E在BC边上,BE=1,F是AC上一动点,则EF+BF的最小值是
5
5

查看答案和解析>>

同步练习册答案