精英家教网 > 初中数学 > 题目详情

如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E是BC的中点,连接DE、OE.

(1)判断DE与⊙O的位置关系并说明理由;    

(2)求证:

(3)若tanC=,DE=2,求AD的长.

 

【答案】

(1)证明∠EDO=∠EBO=90°,所以DE与⊙O相切 (2)通过证明AC="2OE" ,BC2=CD·AC得BC2=2CD·OE (3)

【解析】

试题分析:(1) DE与⊙O相切 

理由如下:连接OD,BD,

∵AB是直径,∴∠ADB=∠BDC=90°

∵E是BC的中点,∴DE=BE=CE,∴∠EDB=∠EBD,

∵OD=OB,∴∠OBD=∠ODB.

∴∠EDO=∠EBO=90°

∴DE与⊙O相切

(2)证明:由题意得OE是的ABC的中位线,∴AC=2OE 

∵∠ABC=∠BDC=900,∠C=∠C ,∴ABC∽BDC

,∴BC2=CD·AC,∴BC2=2CD·OE

(3) ∵DE=2      BC=4    AB=4. tanC 

tanA=, 设BD=AD

 

 

考点:直线与圆相切,相似三角形,三角函数

点评:本题考查直线与圆相切,相似三角形,三角函数,要求学生掌握直线与圆相切,会证明直线与圆相切,熟悉相似三角形的判定方法,会证明两个三角形相似

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且要求其中一个三角形是等腰三角形.(保留作图痕迹,不要求写作法和证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC中,∠ACB=90°,tanB=
34
,D是BC点边上一点,DE⊥AB于E,CD=DE,AC+CD=18.
(1)求BC的长(2)求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,则CD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,△ABC的内切圆⊙0与BC、CA、AB分别切于点D、E、F.
(1)若BC=40cm,AB=50cm,求⊙0的半径;
(2)若⊙0的半径为r,△ABC的周长为ι,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
(1)求sinα的值; 
(2)求AD的长.

查看答案和解析>>

同步练习册答案