精英家教网 > 初中数学 > 题目详情
(2005•青岛)如图,在等腰梯形ABCD中,AD∥BC,M、N分别为AD、BC的中点,E、F分别是BM、CM的中点.
(1)求证:△ABM≌△CDM;
(2)四边形MENF是什么图形?请证明你的结论;
(3)若四边形MENF是正方形,则梯形的高与底边BC有何数量关系?并请说明理由.

【答案】分析:(1)已知四边形ABCD为等腰梯形,推出AB=CD,∠A=∠D,AM=DM故可证明三角形全等.
(2)由1证明三角形全等得出各边之间的关系推出四边形MENF是菱形.
(3)由梯形的性质可推出四边形MENF是正方形推出MN⊥BC且MN=BC.
解答:证明:(1)∵ABCD为等腰梯形,
∴AB=DC,∠A=∠D.
∵M是AD中点,
∴AM=DM.
∴△ABM≌△DCM.

(2)四边形MENF是菱形(若考生回答是平行四边形且给出证明,则此问题只能得2分)
由△ABM≌△DCM,得MB=MC,
∵E、F、N是MB、MC、BC的中点,
∴ME=BM,MF=MC,NF=BM,NE=MC.
∴ME=MF=FN=NE.
∴四边形MENF是菱形.

(3)梯形的高等于底边BC的一半连接MN,
∵MENF是正方形,
∴∠BMC=90°.
∵MB=MC,N是中点,
∴MN⊥BC且MN=BC.
点评:本题主要考查等腰梯形的性质的应用,全等三角形的判定以及菱形的判定定理.
练习册系列答案
相关习题

科目:初中数学 来源:2005年全国中考数学试题汇编《四边形》(06)(解析版) 题型:解答题

(2005•青岛)如图,在矩形ABCD中,AB=6米,BC=8米,动点P以2米/秒的速度从点A出发,沿AC向点C移动,同时动点Q以1米/秒的速度从点C出发,沿CB向点B移动,设P、Q两点移动t秒(0<t<5)后,四边形ABQP的面积为S米2
(1)求面积S与时间t的关系式;
(2)在P、Q两点移动的过程中,四边形ABQP与△CPQ的面积能否相等?若能,求出此时点P的位置;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《三角形》(09)(解析版) 题型:解答题

(2005•青岛)如图,在矩形ABCD中,AB=6米,BC=8米,动点P以2米/秒的速度从点A出发,沿AC向点C移动,同时动点Q以1米/秒的速度从点C出发,沿CB向点B移动,设P、Q两点移动t秒(0<t<5)后,四边形ABQP的面积为S米2
(1)求面积S与时间t的关系式;
(2)在P、Q两点移动的过程中,四边形ABQP与△CPQ的面积能否相等?若能,求出此时点P的位置;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《二次函数》(05)(解析版) 题型:解答题

(2005•青岛)如图,在矩形ABCD中,AB=6米,BC=8米,动点P以2米/秒的速度从点A出发,沿AC向点C移动,同时动点Q以1米/秒的速度从点C出发,沿CB向点B移动,设P、Q两点移动t秒(0<t<5)后,四边形ABQP的面积为S米2
(1)求面积S与时间t的关系式;
(2)在P、Q两点移动的过程中,四边形ABQP与△CPQ的面积能否相等?若能,求出此时点P的位置;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年四川省新课标中考数学模拟试卷(3)(解析版) 题型:解答题

(2005•青岛)如图,在矩形ABCD中,AB=6米,BC=8米,动点P以2米/秒的速度从点A出发,沿AC向点C移动,同时动点Q以1米/秒的速度从点C出发,沿CB向点B移动,设P、Q两点移动t秒(0<t<5)后,四边形ABQP的面积为S米2
(1)求面积S与时间t的关系式;
(2)在P、Q两点移动的过程中,四边形ABQP与△CPQ的面积能否相等?若能,求出此时点P的位置;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2005年山东省青岛市中考数学试卷(课标卷)(解析版) 题型:解答题

(2005•青岛)如图,在矩形ABCD中,AB=6米,BC=8米,动点P以2米/秒的速度从点A出发,沿AC向点C移动,同时动点Q以1米/秒的速度从点C出发,沿CB向点B移动,设P、Q两点移动t秒(0<t<5)后,四边形ABQP的面积为S米2
(1)求面积S与时间t的关系式;
(2)在P、Q两点移动的过程中,四边形ABQP与△CPQ的面积能否相等?若能,求出此时点P的位置;若不能,请说明理由.

查看答案和解析>>

同步练习册答案