½â´ð£º½â£º£¨1£©ÉèÕâ¸ö¶þ´Îº¯ÊýµÄ½âÎöʽΪ
y=a£¨x+1£©£¨x-2£©£¬£¨1·Ö£©
°ÑµãC£¨0£¬2£©×ø±ê´úÈëÆäÖУ¬ÇóµÃa=-1£¬
y=-£¨x+1£©£¨x-2£©=-x
2+x+2=-£¨x-
£©
2+
¡àÕâ¸ö¶þ´Îº¯ÊýµÄ½âÎöʽΪ£º
y=-x
2+x+2£¨3·Ö£©
¶¥µãMµÄ×ø±êΪM£¨
£¬
£©£»£¨4·Ö£©
[Ò²¿ÉÉèΪһ°ãʽy=ax
2+bx+c£¬°ÑA¡¢B¡¢CÈýµã×ø±ê´úÈë½â³ö]
£¨2£©ÉèÏß¶ÎBMËùÔÚÖ±ÏߵĽâÎöʽΪ£ºy=kx+b£¬£¨5·Ö£©
·Ö±ð°ÑB£¨2£¬0£©¡¢M£¨
£¬
£©×ø±ê´úÈëÆäÖУ¬
½âµÃk=-
£¬b=3£¬
¡ày=-
x+3£®
ÈôNµÄ×ø±êΪ£¨x£¬t£©£¬ÔòµÃt=-
x+3£¬
½âµÃx=2-
t£¬£¨6·Ö£©
ÓÉͼÐοÉÖª£ºs=S
¡÷AOC+S
ÌÝÐÎOQNC£¨7·Ö£©
=
¡Á1¡Á2+
£¨2+t£©£¨2-
t£©
»¯¼òÕûÀíµÃs=-
t
2+
t+3£¬£¨8·Ö£©
ÆäÖÐ0£¼t£¼
£»£¨9·Ö£©
£¨3£©ÒÔµãO¡¢µãA£¨»òµãO¡¢µãC£©Îª¾ØÐεÄÁ½¸ö¶¥µã£¬
µÚÈý¸ö¶¥µãÂäÔÚ¾ØÐÎÕâÒ»±ßOA£¨»ò±ßOC£©µÄ¶Ô±ßÉÏ£¬
ÈçÏÂͼ1£¬´ËʱÒ×µÃδ֪¶¥µã×ø±êÊǵãD£¨-1£¬2£©£»£¨10·Ö£©
ÒÔµãA¡¢µãCΪ¾ØÐεÄÁ½¸ö¶¥µã£¬µÚÈý¸ö¶¥µã£¨¼´µãO£©
ÂäÔÚ¾ØÐÎÕâÒ»±ßACµÄ¶Ô±ßÉÏ£¬ÈçÏÂͼ2£¬´Ëʱ
δ֪¶¥µã·Ö±ðΪµãE¡¢µãF£®£¨11·Ö£©
ËüÃǵÄ×ø±êÇó½âÈçÏ£º
¡ßACEFΪ¾ØÐΣ¬
¡à¡ÏACEΪֱ½Ç£¬ÑÓ³¤CE½»xÖáÓÚµãH£¬
ÔòÒ×µÃRt¡÷HOC¡×Rt¡÷COA£¬
¡à
=£¬ÇóµÃOH=4£¬
¡àµãHµÄ×ø±êH£¨4£¬0£©£®¿ÉÇóµÃÏß¶ÎCHËùÔÚÖ±ÏßµÄ
½âÎöʽΪ£ºy=-
x+2£»£¨12·Ö£©
Ïß¶ÎACËùÔÚÖ±ÏßµÄ
½âÎöʽΪ£ºy=2x+2£¬Ïß¶ÎEFËùÔÚÖ±Ïß¹ýÔµãÇÒÓë
Ïß¶ÎACËùÔÚÖ±Ï߯½ÐУ¬´Ó¶ø¿ÉµÃÏß¶ÎEFËùÔÚÖ±ÏßµÄ
½âÎöʽΪ£ºy=2x£»£¨13·Ö£©
Ïß¶ÎAFËùÔÚÖ±ÏßÓëÖ±ÏßCHƽÐУ¬
ÉèÖ±ÏßAFµÄ½âÎöʽΪ£ºy=-
x+m£¬
°ÑA£¨-1£¬0£©×ø±ê´úÈ룬ÇóµÃm=-
£¬
¡àÖ±ÏßAFΪ£ºy=-
x-
£®
¡ßµãEÊÇÖ±ÏßCHÓëÖ±ÏßEFµÄ½»µã£»
µãFÊÇÖ±ÏßAFÓëÖ±ÏßEFµÄ½»µã£¬
¡àµÃÏÂÃæÁ½¸ö·½³Ì×飺
ºÍ
£¬
½âµÃE£¨
£¬
£©£¬F£¨-
£¬-
£©£®£¨14·Ö£©
¡à¾ØÐεÄδ֪¶¥µãΪ£¨-1£¬2£©»ò£¨
£¬
£©¡¢£¨-
£¬-
£©£®
