【题目】如图,将正方形ABCD沿AE,AF折叠后,点B、D恰好重合于点G,测得CF=1,∠CFE=60°,则正方形的边长是_______.
![]()
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=4,BC=3.点M是AB边上一点,且∠CMB=45°.点Q是直线AB上一点且在点B的右侧,BQ=4,点P从点Q出发,沿射线QA方向以每秒2个单位长度的速度运动,设运动时间为t秒.以P为圆心,PC长为半径作半圆P,交直线AB分别于点G,H(点G在点H的左侧).
(1)当t=1秒时,PC的长为 ,t= 秒时,半圆P与AD相切;
(2)当点P与点B重合时,求半圆P被矩形ABCD的对角线AC所截得的弦长;
(3)若∠MCP=15°,请直接写出扇形HPC的弧长为 .
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形 ABCD 的对角线 AC 与 BD 交于点 O,点 E 在 AD 上,且 DE=CD,连接 OE,BE, ABE
ACB ,若 AE=2,则 OE 的长为___________.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,把正方形纸片ABCD沿对边上的两点M、N所在的直线对折,使点B落在边CD上的点E处,折痕为MN,其中CE=
CD.若AB的长为2,则MN的长为( )
![]()
A.3B.
C.
D.![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】订书机是由推动器、托板、压形器、底座、定位轴等组成.如图1是一台放置在水平桌面上的大型订书机,将其侧面抽象成如图2所示的几何图形.若压形器EF的端点E固定于定位轴CD的中点处,在使用过程中,点D和点F随压形器及定位轴绕点C旋转,CO⊥AB于点O,CD=12cm连接CF,若∠FED=45°,∠FCD=30°.
(1)求FC的长;
(2)若OC=2cm求在使用过程中,当点D落在底座AB上时,请计算CD与AB的夹角及点F运动的路线之长.(结果精确到0.1cm,参考数据:sin9.6°≈0.17.π≈3.14,
1.732)
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的对角线相交于O,E是OD的中点,DF∥AC交CE延长线于点F,连接AF.
(1)求证:四边形AODF是菱形.
(2)若∠AFC=90°,AB=2,求AD的长.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,且AB=4,点C是弧AB上的一动点(不与A,B重合),过点B作⊙O的切线交AC的延长线于点D,点E是BD的中点,连接EC.
![]()
(1)若BD=8,求线段AC的长度;
(2)求证:EC是⊙O的切线;
(3)当∠D=30°时,求图中阴影部分面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线
与
轴交于
两点,与
轴交于
,其中
,点
为抛物线上一动点,过点
作
平行
交抛物线于
,
(1)求抛物线的解析式;
(2)①当
两点重合时时,
所在直线解析式为_____________.
②在①的条件下,取线段
中点
,连接
,判断以点
为顶点的四边形是什么四边形,并说明理由?
(3)已知
,连接
,
轴,交
于
,
轴上有一动点
,
,
的长为______.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:若
中,其中一个内角是另一个内角的一半,则称
为“半角三角形”.
(1)若
为半角三角形,
,则其余两个角的度数为 .
(2)如图1,在平行四边形
中,
,点
在边
上,以
为折痕,将
向上翻折,点
恰好落在
边上的点
,若
,求证:
为半角三角形;
(3)如图2,以
的边
为直径画圆,与边
交于
,与边
交于
,已知
的面积是
面积的
倍.
①求证:
.
②若
是半角三角形,
,直接写出
的取值范围.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com