精英家教网 > 初中数学 > 题目详情
精英家教网如图,过点P(-4,3)作x轴,y轴的垂线,分别交x轴,y轴于A、B两点,交双曲线y=
kx
(k≥2)于E、F两点.
(1)点E的坐标是
 
,点F的坐标是
 
;(均用含k的式子表示)
(2)判断EF与AB的位置关系,并证明你的结论;
(3)记S=S△PEF-S△OEF,S是否有最小值?若有,求出其最小值;若没有,请你说明理由.
分析:(1)把x=-4,y=3分别代入y=
k
x
,求出对应的y值与x值,从而得出点E、点F的坐标;
(2)根据三角函数的定义,在Rt△PAB中与Rt△PEF中,分别求出tan∠PAB与tan∠PEF的值,然后由平行线的判定定理,得出EF与AB的位置关系;
(3)如果分别过点E、F作PF、PE的平行线,交点为P′,则四边形PEP′F是矩形.所求面积S=S△PEF-S△OEF=S△P′EF-S△OEF=S△OME+S矩形OMP′N+S△ONF,根据反比例函数比例系数k的几何意义,可用含k的代数式表示S,然后根据二次函数的性质及自变量的取值范围确定S的最小值.
解答:解:(1)E(-4,-
k
4
),F(
k
3
,3);

(2)结论EF∥AB.理由如下:
∵P(-4,3),
∴E(-4,-
k
4
),F(
k
3
,3),
即得PE=3+
k
4
,PF=
k
3
+4,
在Rt△PAB中,tan∠PAB=
PB
PA
=
4
3

在Rt△PEF中,tan∠PEF=
PF
PE
=
k
3
+4
3+
k
4
=
4
3

∴tan∠PAB=tan∠PEF,
∴∠PAB=∠PEF,
∴EF∥AB;

(3)S有最小值.理由如下:
分别过点E、F作PF、PE的平行线,交点为P′.
由(2)知P′(
k
3
,-
k
4

∵四边形PEP′F是矩形,精英家教网
∴S△P′EF=S△PEF
∴S=S△PEF-S△OEF
=S△P′EF-S△OEF
=S△OME+S矩形OMP′N+S△ONF
=
k
2
+
k2
12
+
k
2

=
k2
12
+k

=
1
12
(k+6)2-3

又∵k≥2,此时S的值随k值增大而增大,
∴当k=2时,S最小=
7
3

∴S的最小值是
7
3

故答案为:(1)(-4,-
k
4
),(
k
3
,3).
点评:本题主要考查了三角函数的定义,平行线的判定,反比例函数比例系数的几何意义及二次函数最小值的求法等知识点,综合性较强,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,过点P画出射线PM,PN,使PM∥OA,PN∥OB,且射线PM和射线OA,射线PN和射线OB方向分别相同,量一量∠O和∠P,你能得到什么结论?如果射线PM和射线OA,射线PN和射线OB一组方向相同、另一组方向相反,∠O和∠P又有什么关系呢?如果两组方向都相反,∠O和∠P有什么关系?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在平面直角坐标系中,A(a,0),B(0,b),且a、b满足b=
a2-4
+
4-a2
+16
a+2

(1)求直线AB的解析式;
(2)若点M为直线y=mx在第一象限上一点,且△ABM是等腰直角三角形,求m的值.
(3)如图3过点A的直线y=kx-2k交y轴负半轴于点P,N点的横坐标为-1,过N点的直线y=
k
2
x-
k
2
交AP于点M,给出两个结论:①
PM+PN
NM
的值是不变;②
PM-PN
AM
的值是不变,只有一个结论是正确,请你判断出正确的结论,并加以证明和求出其值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,过点O、A(1,0)、B(0,
3
)作⊙M,D为⊙M上不同于点O、A的一点,则∠ODA的度数为(  )
A、60°
B、60°或120°
C、30°
D、30°或150°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,过点P(2,
2
)作x轴的平行线交y轴于点A,交双曲线y=
k
x
(x>0)于点N,作PM⊥AN交双曲线y=
k
x
(x>0)于点M,连接AM.已知PN=4.
(1)求k的值;
(2)设直线MN解析式为y=ax+b,求不等式
k
x
≥ax+b的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,过点A(1,0)的直线与y轴平行,且分别与正比例函数y=k1x,y=k2x和反比例y=
k3x
在第一象限相交,则k1、k2、k3的大小关系是
k2>k3>k1
k2>k3>k1

查看答案和解析>>

同步练习册答案