精英家教网 > 初中数学 > 题目详情
如图,ON为∠AOB中的一条射线,点P在边OA上,PH⊥OB于H,交ON于点Q,PMOB交ON于点M,MD⊥OB于点D,QROB交MD于点R,连接PR交QM于点S.
(1)求证:四边形PQRM为矩形;
(2)若OP=
1
2
PR,试探究∠AOB与∠BON的数量关系,并说明理由.
精英家教网
(1)证明:∵PH⊥OB,MD⊥OB,
∴PHMD,
∵PMOB,QROB,
∴PMQR,
∴四边形PQRM是平行四边形,
∵PH⊥OB,
∴∠PHO=90°,
∵PMOB,
∴∠MPQ=∠PHO=90°,
∴四边形PQRM为矩形;

(2)∠AOB=3∠BON.理由如下:
∵四边形PQRM为矩形,
∴PS=SR=SQ=
1
2
PR,
∴∠SQR=∠SRQ,
又∵OP=
1
2
PR,
∴OP=PS,
∴∠POS=∠PSO,
∵QROB,
∴∠SQR=∠BON,
在△SQR中,∠PSO=∠SQR+∠SRQ=2∠SQR=2∠BON,
∴∠POS=2∠BON,
∴∠AOB=∠POS+∠BON=2∠BON+∠BON=3∠BON,
即∠AOB=3∠BON.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,ON为∠AOB中的一条射线,点P在边OA上,PH⊥OB于H,交ON于点Q,PM∥OB交ON于点M,MD⊥OB于点D,QR∥OB交MD于点R,连接PR交QM于点S.
(1)求证:四边形PQRM为矩形;
(2)若OP=
12
PR,试探究∠AOB与∠BON的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数.
(2)若(1)中∠AOB=α°,其它条件不变,求∠MON的度数.
(3)若(1)中∠BOC=β°(β为锐角),其它条件都不变(∠AOB仍是90°),求∠MON的度数.
(4)从(1)(2)(3)的结果中能看出什么规律?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,ON为∠AOB中的一条射线,点P在边OA上,PH⊥OB于H,交ON于点Q,PM∥OB交ON于点M,MD⊥OB于点D,QR∥OB交MD于点R,连接PR交QM于点S.
(1)求证:四边形PQRM为矩形;
(2)若OP=数学公式PR,试探究∠AOB与∠BON的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:月考题 题型:单选题

如图,P为∠AOB的平分线OC上任意一点,PM⊥OA于M,PN⊥OB于N,连接MN 交OP于点D.则①PM=PN,②MO=ON,③OP⊥MN,④MD=ND.其中正确的有

A. 1个
B. 2个
C.3个
D.4个

查看答案和解析>>

同步练习册答案