分析 如图,过C作CH⊥x轴于H,过A作AF⊥x轴于F,AG⊥y轴于G,过D作DE⊥AG于E,于是得到∠CHB=∠AFO=∠AED=90°,根据余角的性质得到∠DAE=∠FAB,推出△BCH∽△ABF,根据相似三角形的性质得到$\frac{BH}{AF}=\frac{CH}{BF}=\frac{BC}{AB}$,求得BH=$\frac{1}{2}$AF=1,CH=$\frac{1}{2}$BF=$\frac{-a+2}{2}$,通过△BCH≌△ADE,得到AE=BH=1,DE=CH=$\frac{-a+2}{2}$,求得EG=3-1=2,于是得到结论.
解答
解:如图,过C作CH⊥x轴于H,过A作AF⊥x轴于F,AG⊥y轴于G,过D作DE⊥AG于E,
∴∠CHB=∠AFO=∠AED=90°,
∴∠GAF=90°,∴∠DAE=∠FAB,
∵四边形ABCD是矩形,
∴∠ABC=90°,
∴∠BCH=∠ABF,
∴△BCH∽△ABF,
∴$\frac{BH}{AF}=\frac{CH}{BF}=\frac{BC}{AB}$,
∵A(3,2),
∴AF=2,AG=3,
∵点C的横坐标是a,
∴OH=-a,
∵BC:AB=1:2,
∴BH=$\frac{1}{2}$AF=1,CH=$\frac{1}{2}$BF=$\frac{-a+2}{2}$,
∵△BCH∽△ABF,
∴∠HBC=∠DAE,
在△BCH与△ADE中,$\left\{\begin{array}{l}{∠BHC=∠DEA}\\{∠CBH=∠DAE}\\{BC=AD}\end{array}\right.$,
∴△BCH≌△ADE,
∴AE=BH=1,DE=CH=$\frac{-a+2}{2}$,
∴EG=3-1=2,
∴D(2,$\frac{6-a}{2}$).
故答案为:(2,$\frac{6-a}{2}$).
点评 本题考查了相似三角形的判定和性质,坐标与图形的性质,全等三角形的判定和性质,矩形的性质,正确的画出图形是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | an(1-a3+a2) | B. | an(-a2n+a2) | C. | an(1-a2n+a2) | D. | an(-a3+an) |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{6}{3a}$ | B. | $\frac{{{x^3}{y^2}}}{{2{y^3}}}$ | C. | $\frac{x}{{{x^2}-x}}$ | D. | $\frac{2a+b}{a+b}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com