精英家教网 > 初中数学 > 题目详情
将号码分别为1,2,3,…,9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个球,号码为a,放回后乙再摸出一个球,号码为b,则使不等式a-2b+10>0成立的事件发生的概率为(  )
分析:本题是一个等可能事件的概率,试验发生包含的事件是两次分别从袋中摸球,共有9×9种结果,满足条件的事件是使不等式a-2b+10>0成立的,即2b-a<10,列举出当当b=1,2,3,4,5,6,7,8,9时的所有的结果,得到概率.
解答:解:由题意知本题是一个等可能事件的概率,
试验发生包含的事件是两次分别从袋中摸球,共有9×9=81种结果,
满足条件的事件是使不等式a-2b+10>0成立的,即2b-a<10
当b=1,2,3,4,5时,a有9种结果,共有45种结果,
当b=6时,a有7种结果
当b=7时,a有5种结果
当b=8时,a有3种结果
当b=9时,a有1种结果
∴共有45+7+5+3+1=61种结果,
∴所求的概率是
61
81

故选D.
点评:本题考查等可能事件的概率,在解题的过程中注意列举出所有的满足条件的事件数时,因为包含的情况比较多,又是一个数字问题,注意做到不重不漏.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

5、有30张分别标示1~30号的纸牌.先将号码数为3的倍数的纸牌拿掉,然后从剩下的纸牌中,拿掉号码数为2的倍数的纸牌.若将最后剩下的纸牌,依号码数由小到大排列,则第5张纸牌的号码为(  )

查看答案和解析>>

科目:初中数学 来源:2012年浙教版初中数学八年级上5.3一元一次不等式练习卷(解析版) 题型:选择题

将号码分别为1,2,3,…,9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个球,号码为a,放回后乙再摸出一个球,号码为b,则使不等式成立的事件发生的概率为(     ).

(A)         (B)          (C)        (D)

 

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

将号码分别为1,2,3,…,9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个球,号码为a,放回后乙再摸出一个球,号码为b,则使不等式a-2b+10>0成立的事件发生的概率为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将号码分别为1,2,3,…,9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个球,号码为a,放回后乙再摸出一个球,号码为b,则使不等式a-2b+10>0成立的事件发生的概率为(  )
A.
52
81
B.
59
81
C.
60
81
D.
61
81

查看答案和解析>>

同步练习册答案