精英家教网 > 初中数学 > 题目详情

如图1,△ABC的边BC在直线上,AC ⊥BC,且AC=BC;△EFP的边FP也在直线上,边EF与边AC重合,且EF=FP.
(1)将△EFP沿直线向左平移到图2的位置时,EP交AC于点Q,连结AP,BQ.猜想  BQ   与AP所满足的数量关系和位置关系。(直接写出结论)
AP           BQ,AP           BQ;   (4分)
(2)将△EFP沿直线向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连结AP,BQ.你认为(1)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.(6分)

(1)BQ=AP,BQ⊥AP.
(2)关系仍然成立:BQ=AP,BQ⊥AP.间解析

解析试题分析:(1)延长BQ交AP于点M,根据等腰直角三角板的每一个锐角都是45°可得∠EPF=45°,然后求出∠CQP=45°,根据等角对等边的性质求出CQ=CP,然后利用边角边定理证明△BCQ与△ACP全等,再根据全等三角形对应边相等,即可证明BQ=AP,对应角相等可得∠CBQ=∠CAP,又∠CBQ+∠BQC=90°,所以∠CAP+∠AQM=90°,从而得到BQ⊥AP;
(2)延长QB交AP于点M,根据等腰直角三角板的每一个锐角都是45°可得∠EPF=45°,根据对顶角相等得到∠CPQ=45°,然后求出∠CQP=45°,根据等角对等边的性质求出CQ=CP,然后利用边角边定理证明△BCQ与△ACP全等,再根据全等三角形对应边相等,即可证明BQ=AP,对应角相等可得∠BQC=∠APC,又∠CBQ+∠BQC=90°,所以∠PBM+∠APC=90°,从而得到BQ⊥AP.
考点:等腰直角三角形;全等三角形的判定与性质.
点评:本题要求熟练掌握等腰直角三角形的两直角边相等,每一个锐角都是45°的性质,全等三角形的判定与性质,题目不比较复杂但思路比较清晰,此类题目一般都是下一问继续沿用第一问的证明思路进行求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,正三角形ABC的边长为a,D是BC的中点,P是AC边上的点,连接PB和PD得到△PBD.求:
(1)当点P运动到AC的中点时,△PBD的周长;
(2)△PBD的周长的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正△ABC的边长AB=2,以A为圆心的圆切BC于点D,交AB于点E,交AC于点F,则弧EF的长=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•高淳县一模)如图①,若点P是△ABC内或边上一点,且∠BPC=2∠A,则称点P是△ABC内∠A的二倍角点.
(1)如图②,点O等边△ABC的外心,连接OB、OC.
①求证:点O是△ABC内∠A的一个二倍角点;
②作△BOC的外接圆,求证:弧BOC上任意一点(B、C除外)都是△ABC内∠A的二倍角点.
(2)如图③,在△ABC的边AB上求作一点M,使点M是△ABC内∠A的一个二倍角点(要求用尺规作图,保留作图痕迹,并写出作法).
(3)在任意三角形形内,是否存在一点P同时为该三角形内三个内角的二倍角点?请直接写出结论,不必说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以△ABC的边AB、AC向外作等边△ABE和△ACD,连接BD、CE.
(1)线段CE和BD有什么数量关系?证明你的结论.
(2)能否求出∠DFC的度数?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以△ABC的边AB、AC为边,向外作等边△ABD和等边△ACE,连接BE、CD相交于点F.
求证:(1)△DAC≌△BAE;
(2)BE=DC;
(3)求∠DFE的度数.

查看答案和解析>>

同步练习册答案