精英家教网 > 初中数学 > 题目详情
如图,已知抛物线经过原点O和点A,点B(2,3)是该抛物线对称轴上一点,过点B作BC∥x轴交抛物线于点C,连接BO、CA,若四边形OACB是平行四边形.
(1)①直接写出A、C两点的坐标;
     ②求这条抛物线的函数关系式;
(2)设该抛物线的顶点为M,试在线段AC上找出这样的点P,使得△PBM是以BM为底边的等
腰三角形,并求出此时点P的坐标;
(3)经过点M的直线把?OACB的面积分为1:3两部分,求这条直线的函数关系式.

【答案】分析:(1)①根据点B(2,3)是该抛物线对称轴上一点,得出A点坐标为(4,0),进而得出AO的长,即可得出BC=AO,求出C点坐标即可;
②根据O,A,C三点坐标,利用待定系数法求出二次函数的解析式即可;
(2)首先求出AC所在解析式,进而得出符合条件的等腰△PBM顶角的顶点P在线段BM的垂直平分线与线段AC的交点上,求出即可;
(3)由条件可知经过点M且把?OACB的面积分为1:3两部分的直线有两条,分别得出即可.
解答:解:(1)①∵点B(2,3)是该抛物线对称轴上一点,
∴A点坐标为(4,0),
∵四边形OACB是平行四边形,
∴BC=AO,
∴C点坐标为:(6,3),

②设所求的抛物线为y=ax2+bx+c,则依题意,得
  
 解得:
∴所求的抛物线函数关系式为:y=x2-x.

(2)设线段AC所在的直线的函数关系式为y=k1x+b1,根据题意,得

解得:
∴直线AC的函数关系式为:y=x-6.
∵y=x2-x=(x2-4x),
=(x2-4x+4-4),
=(x-2)2-1,
∴抛物线的顶点坐标M为(2,-1),
∴符合条件的等腰△PBM顶角的顶点P在线段BM的垂直平分线与线段AC的交点上,
而BM=4,所以P点的纵坐标为1,把y=1代入y=x-6中,得x=
∴点P的坐标为(,1).

(3)由条件可知经过点M且把?OACB的面积分为1:3两部分的直线有两条.
(ⅰ)∵?OACB=OA•BD=4×3=12,△OBD的面积=OD•BD=×2×3=3,
∴直线x=2为所求.
(ⅱ)设符合条件的另一直线分别与x轴、BC交于点E(x1,0)、F(x2,3),
则AE=4-x1,CF=6-x2
∴四边形ACFE的面积=(4-x1+6-x2)×3=×12.
即x1+x2=8.
∵BC∥x轴,
∴△MDE∽△MBF,
=
=
即4x1-x2=6.
∴x1=,x2=
∴E(,0)、F(,3),
设直线ME的函数关系式为y=k2x+b2,则

解得:
∴直线ME的函数关系式为y=x-
综合(ⅰ)(ⅱ)得,所求直线为:x=2或y=x-
(注:用其它方法求解参照以上标准给分.)
点评:此题主要考查了二次函数的综合应用以及平行四边形的性质和待定系数法求一次函数解析式等知识,利用平行四边形的面积以及相似三角形的性质得出是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=-2与x轴交于点C,直线y=-精英家教网2x+1经过抛物线上一点B(2,m),且与y轴.直线x=-2分别交于点D、E.
(1)求m的值及该抛物线对应的函数关系式;
(2)①判断△CBE的形状,并说明理由;②判断CD与BE的位置关系;
(3)若P(x,y)是该抛物线上的一个动点,是否存在这样的点P,使得PB=PE?若存在,试求出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•衡阳)如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=-1.
(1)求抛物线对应的函数关系式;
(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPQ为矩形;
②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=2与x轴交于点C,直线y=-2x-1经过抛物线上一点B(-2,m),且与y轴、直线x=2分别交于点D、E,
(1)求m的值及该抛物线对应的函数关系式;
(2)求证:①CB=CE;②D是BE的中点.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线经过坐标原点,与x轴的另一个交点为A,且顶点M坐标为(1,2),
(1)求该抛物线的解析式;
(2)现将它向右平移m(m>0)个单位,所得抛物线与x轴交于C、D两点,与原抛物线交于点P,△CDP的面积为S,求S关于m的关系式;
(3)当m=2时,点Q为平移后的抛物线的一动点,是否存在这样的⊙Q,使得⊙Q与两坐标轴都相切?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线经过原点O和x轴上的另一点E,顶点为M(2,4),矩形ABCD的顶点A与O重合,AD,AB分别在x,y轴上,且AD=2,AB=3.
(1)求该抛物线对应的函数解析式;
(2)现将矩形ABCD以每秒1个单位长度的速度从左图所示位置沿x轴的正方向匀速平行移动;同时AB上一动点P也以相同的速度从点A出发向B匀速运动,设它们的运动时间为t秒(0≤t≤3),直线AB与抛物线的交点为N,设多边形PNCD的面积为S,试探究S是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.
精英家教网

查看答案和解析>>

同步练习册答案