精英家教网 > 初中数学 > 题目详情

如图2-2-1,由一个边长为a的小正方形与两个长,宽分别为a,b的小矩形组成图形ABCD,则整个图形可表达出一些有关多项式分解因式的等式,请你写出其中任意三个等式.

解:a(a+b)+ab=a(a+2b);a(a+2b)-ab=a(a+b);

       a(a+2b)-a2=2ab;a2+2ab=a(a+2b);

       a(a+2b)-a·2b=a2;a(a+2b)-a(a+b)=ab.

       点拨:答案不唯一,从上述等式中任写三个即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知直角坐标系内有一条直线和一条曲线,这条直线和x轴、y轴分别交于点A和点B,且OA=OB=1,这条曲线是函数y=
12x
的图象在第一限内的一个分支,点P是这条曲线的任意一点,它的坐标是(a,b),由点P向x轴、y轴所作的垂线PM、PN(点M、N为垂足)分别与直线AB相交于点E和F.
(1)求△OEF的面积(a,b的代数式表示);
(2)△AOF与△BOE是否一定相似?如果一定相似,请证明;如果不一定相似,请说明理由;
(3)当点P在曲线上移动时,△OEF随之变动,指出在△OEF的三个内角中,是否有大小始终保精英家教网持不变的角?若有,请求出其大小;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,某隧道的截面是由一抛物线和一矩形构成,其行车道CD总宽度为8米,隧道为单行线2车道.
(1)以矩形一边EF所在直线为x轴,经过隧道顶端最高点H且垂直于EF的直线为y轴,建立如图所示的平面直角坐标系,求出此抛物线的解析式;
(2)在隧道拱的两侧距地面3米高处各安装一盏路灯,在(1)的平面直角坐标系中,用坐标表示其中一盏路灯的位置;
(3)为了保证行车安全,要求行驶车辆顶部(设为平顶)与隧道拱在竖直方向上高度之差至少有0.5米.现有一辆汽车,装载货物后,其宽度为4米,车载货物的顶部与路面的距离为2.5米,该车能否通过这个隧道?请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,某隧道的截面是由一抛物线和一矩形构成,其行车道CD总宽度为8米,隧道为单行线2车道.
(1)以矩形一边EF所在直线为x轴,经过隧道顶端最高点H且垂直于EF的直线为y轴,建立如图所示的平面直角坐标系,求出此抛物线的解析式;
(2)在隧道拱的两侧距地面3米高处各安装一盏路灯,在(1)的平面直角坐标系中,用坐标表示其中一盏路灯的位置;
(3)为了保证行车安全,要求行驶车辆顶部(设为平顶)与隧道拱在竖直方向上高度之差至少有0.5米.现有一辆汽车,装载货物后,其宽度为4米,车载货物的顶部与路面的距离为2.5米,该车能否通过这个隧道?请说明理由.

查看答案和解析>>

科目:初中数学 来源:2008年《海峡教育报》初中数学综合练习(五)(解析版) 题型:解答题

如图,某隧道的截面是由一抛物线和一矩形构成,其行车道CD总宽度为8米,隧道为单行线2车道.
(1)以矩形一边EF所在直线为x轴,经过隧道顶端最高点H且垂直于EF的直线为y轴,建立如图所示的平面直角坐标系,求出此抛物线的解析式;
(2)在隧道拱的两侧距地面3米高处各安装一盏路灯,在(1)的平面直角坐标系中,用坐标表示其中一盏路灯的位置;
(3)为了保证行车安全,要求行驶车辆顶部(设为平顶)与隧道拱在竖直方向上高度之差至少有0.5米.现有一辆汽车,装载货物后,其宽度为4米,车载货物的顶部与路面的距离为2.5米,该车能否通过这个隧道?请说明理由.

查看答案和解析>>

同步练习册答案