精英家教网 > 初中数学 > 题目详情
正方形OABC的边长为2,把它放在如图所示的直角坐标系中,点M(t,0)是X轴上一个动点,连接BM,在BM的右侧作正方形BMNP;直线DE的解析式为y=2x+b,与X轴交于点D,与Y轴交于点E,当三角形PDE为等腰直角三角形时,点P的坐标是   
【答案】分析:过点P作PF⊥BC交CB的延长线于点F,根据同角的余角相等可得∠ABM=∠FBP,然后利用“角角边”证明△ABM和△FBP全等,根据全等三角形对应边相等可得BF=AB,PF=AM,然后根据正方形OABC的边长为2以及点M(t,0)表示出点P的坐标,再利用直线DE的解析式求出点D、E的坐标,然后分①DE是斜边时,利用勾股定理以及两点间的距离公式分别表示出PD、PE、DE的平方,再根据等腰直角三角形的三边关系,②PD是斜边时,过点P作PF⊥y轴于点F,然后利用“角角边”证明△EDO和△PEF全等,根据全等三角形对应边相等可得EF=DO,PC=EO,然后用b、t表示并求解即可得到点P的坐标.
解答:解:如图,过点P作PF⊥BC交CB的延长线于点F,
∵四边形OABC与四边形BMNP都是正方形,
∴∠ABM+∠MBF=90°,
∠FBP+∠MBF=90°,
∴∠ABM=∠FBP,
在△ABM和△FBP中,
∴△ABM≌△FBP(AAS),
∴BF=AB,PF=AM,
∵正方形OABC的边长为2,点M(t,0),
∴BF=2,PF=t-2,
点P到x轴的距离为t-2+2=t,
∴点P的坐标为(4,t),
又∵当y=0时,2x+b=0,解得x=-
当x=0时,y=b,
∴点D(-,0),E(0,b),
①DE是斜边时,
PD2=(+4)2+t2,PE2=(b-t)2+42,DE2=(2+b2
∵△PDE是等腰直角三角形,
∴PD2=PE2,且PD2+PE2=DE2
即(+4)2+t2=(b-t)2+42,且(+4)2+t2+(b-t)2+42=(2+b2
b2+4b+16+t2=b2-2bt+t2+16,且b2+4b+16+t2+b2-2bt+t2+16=b2+b2
整理得,b=(t+2)且t2-b(t-2)+16=0,
∴t2-(t+2)(t-2)+16=0,
整理得,t2=16,
解得t1=4,t2=-4(舍去),
∴点P的坐标是(4,4);

②PD是斜边时,∵△PDE是等腰直角三角形,
∴PE⊥DE,且PE=DE,
过点P作PF⊥y轴于点F,
∵∠DEO+∠PEO=90°,∠DEO+∠EDO=90°,
∴∠PEO=∠EDO,
在△EDO和△PEF中,
∴△EDO≌△PEF(AAS),
∴EF=DO=,PC=EO=b,
又∵点P(4,t),
∴b=4,b-t=
解得t==×4=2,
∴点P坐标为(4,2),
此时点C、F重合,点M、N重合,
综上所述,点P的坐标为(4,4)或(4,2).
故答案为:(4,4)或(4,2).
点评:本题是一次函数的综合题型,主要利用了全等三角形的判定与性质,等腰三角形的性质,直线与坐标轴的交点的求解,勾股定理的应用,综合题但难度不大,要注意分情况讨论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,正方形OABC的边长为2,则该正方形绕点O逆时针旋转45°后,B点的坐标为(  )
A、(2,2)
B、(0,2
2
C、(2
2
,0)
D、(0,2)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系中,正方形OABC的边长是2.O为坐标原点,点A在x的正半轴上,点C在y的正半轴上.一条抛物线经过A点,顶点D是OC的中点.
(1)求抛物线的表达式;
(2)正方形OABC的对角线OB与抛物线交于E点,线段FG过点E与x轴垂直,分别交x轴和线段BC于F,G点,试比较线段OE与EG的长度;
(3)点H是抛物线上在正方形内部的任意一点,线段IJ过点H与x轴垂直,分别交x轴和线段BC于I、J点,点K在y轴的正半轴上,且OK=OH,请证明△OHI≌△JKC.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图在平面直角坐标系xoy中,正方形OABC的边长为2厘米,点A、C分别在y轴的负半轴和x轴的正半轴上.抛物线y=ax2+bx+c经过点A,B和点D(4,
143

(1)求抛物线的解析式;
(2)如果点P由点A开始沿AB边以2厘米/秒的速度向点B移动,同时点Q由B点开始沿BC边以1厘米/秒的速度向点C移动.若P、Q中有一点到达终点,则另一点也停止运动,设P、Q两点移动的时间为t秒,S=PQ2(厘米2)写出S与t之间的函数关系式,并写出t的取值范围,当t为何值时,S最小;
(3)当s取最小值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出点R的坐标;如果不存在,请说明理由.
(4)在抛物线的对称轴上求出点M,使得M到D,A距离之差最大?写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•德阳)在平面直角坐标xOy中,(如图)正方形OABC的边长为4,边OA在x轴的正半轴上,边OC在y轴的正半轴上,点D是OC的中点,BE⊥DB交x轴于点E.
(1)求经过点D、B、E的抛物线的解析式;
(2)将∠DBE绕点B旋转一定的角度后,边BE交线段OA于点F,边BD交y轴于点G,交(1)中的抛物线于M(不与点B重合),如果点M的横坐标为
12
5
,那么结论OF=
1
2
DG能成立吗?请说明理由;
(3)过(2)中的点F的直线交射线CB于点P,交(1)中的抛物线在第一象限的部分于点Q,且使△PFE为等腰三角形,求Q点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形OABC和正方形AEDF各有一个顶点在一反比例函数图象上,且正方形OABC的边长为2.
(1)求反比例函数的解析式;
(2)求点D的坐标.

查看答案和解析>>

同步练习册答案