精英家教网 > 初中数学 > 题目详情
等边△ABC边长为6,P为BC边上一点,∠MPN=60°,且PM、PN分别于边AB、AC交于点E、F.
(1)如图1,当点P为BC的三等分点,且PE⊥AB时,判断△EPF的形状;
(2)如图2,若点P在BC边上运动,且保持PE⊥AB,设BP=x,四边形AEPF面积的y,求y与x的函数关系式,并写出自变量x的取值范围;
(3)如图3,若点P在BC边上运动,且∠MPN绕点P旋转,当CF=AE=2时,求PE的长.
精英家教网
分析:(1)根据三等分点的定义,求得BP与PC的长,进而根据直角三角形中30度的锐角所对的直角边等于斜边的一半,即可求得BE的长,即可作出判断;
(2)分别表示出△ABC、△BPE、△PCF的面积,根据四边形AEPF的面积=△ABC的面积-△BPE的面积-△PCF的面积,即可求解;
(3)首先证明△BPE∽△CFP,根据相似三角形的对应边的比相等即可求得BP的长,进而即可求得PE的长.
解答:解:(1)∵点P为BC的三等分点,
∴BP=
2
3
BC=4,PC=
1
3
BC=2,
∵PE⊥AB,
∴在直角△BPE中,∠B=60°,
∴∠BPE=30°,
∴BE=
1
2
BP=2,
∴BE=CP,
又∵∠MPN=60°,
∴△EPF是等边三角形;

(2)△ABC的面积是:
1
2
×6×6×
3
2
=9
3

BP=x,则BE=
1
2
BP=
1
2
x.EP=
3
BE=
3
2
x,PC=6-x,PF=
3
PC=
3
(6-x).
则△BPE的面积是:
1
2
BE•EP=
1
2
×
1
2
x
3
2
x=
3
8
x2
△PCF的面积是:
1
2
PC•PF=
1
2
(6-x)•
3
(6-x)=
3
2
(6-x)2
∴四边形AEPF面积的y=9
3
-
3
8
x2-
3
2
(6-x)2
即y=-
5
3
8
x2+6
3
x-9
3
(3<x<6);

(3)∵在△BPE中,∠B=60°,
∴∠BEP+∠BPE=120°,
∵∠MPN=60°,
∴∠BPE+∠FPC=120°,
∴∠BEP=∠FPC,
又∵∠B=∠C,
∴△BPE∽△CFP,
BP
CF
=
BE
CP

设BP=x,则CP=6-x.
x
2
=
4
6-x

解得:x=2或4.
当x=2时,在三角形△BEP中,∠B=60°,BE=4,BP=2,
则PE=2
3

当x=4时,在三角形△BEP中,∠B=60°,BE=4,BP=4,
则△BEP是等边三角形,∴PE=4.
故PE=2
3
或4.
点评:本题主要考查了相似三角形的判定与性质,正确根据相似三角形对应边的比相等求得BP的长是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,等边△ABC边长为4,E是边BC上动点,EH⊥AC于H,过E作EF∥AC,交线段AB于点F,在线段AC上取点P,使PE=EB.设EC=x(0<x≤2).
(1)请直接写出图中与线段EF相等的两条线段(不再另外添加辅助线);
(2)Q是线段AC上的动点,当四边形EFPQ是平行四边形时,求平行四边形EFPQ的面积(用含x的代数式表示);
(3)当(2)中的平行四边形EFPQ面积最大值时,以E为圆心,r为半径作圆,根据⊙E与此时平行四边形EFPQ四条边交点的总个数,求相应的r的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

7、如图,等边△ABC边长为3cm,将△ABC沿AC向右平移1cm,得到△DEF,则四边形ABEF的周长(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,已知等边△ABC边长为1,D是△ABC外一点且∠BDC=120°,BD=CD,∠MDN=60°.
求证:△AMN的周长等于2.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,等边△ABC边长为10cm,以AB为直径的⊙O分别交CA、CB于D、E两点,则图中阴影部分的面积(结果保留π)是
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

等边△ABC边长为6,P为BC边上一点,∠MPN=60°,且PM、PN分别交边AB、AC于点E、F.
(1)如图1,若点P在BC边上运动,且保持PE⊥AB,设BP=x,四边形AEPF面积的y,求y与x的函数关系式,并写出自变量x的取值范围;
(2)如图2,若点P在BC边上运动,且∠MPN绕点P旋转,当CF=AE=2时,求PE的长.

查看答案和解析>>

同步练习册答案