精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,AB=AC,∠BAC=120°,DE垂直平分AC,交BC于D,交AC于E,且DE=2cm,求BC的长.
分析:首先连接AD,由DE垂直平分AC,根据线段垂直平分线的性质,易得AD=CD,又由在△ABC中,AB=AC,∠BAC=120°,易求得∠DAC=∠B=∠C=30°,继而可得∠BAD=90°,然后利用含30°角的直角三角形的性质,即可求得BC的长.
解答:解:连接AD,
∵DE垂直平分AC,
∴AD=CD,∠DEC=90°,
∴∠DAC=∠C,
∵在△ABC中,AB=AC,∠BAC=120°,
∴∠B=∠C=
180°-∠BAC
2
=30°,
∴∠DAC=∠C=∠B=30°,
∴∠ADB=∠DAC+∠C=60°,
∴∠BAD=180°-∠B-∠ADB=90°,
在Rt△CDE中,∠C=30°,DE=2cm,
∴CD=2DE=4cm,
∴AD=CD=4cm,
在Rt△BAD中,∠B=30°,
∴BD=2AD=8cm,
∴BC=BD+CD=12(cm).
点评:此题考查了线段垂直平分线的性质、等腰三角形的性质以及含30°角的直角三角形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案