精英家教网 > 初中数学 > 题目详情

【题目】把正方形ABCD绕着点A,按顺时针方向旋转得到正方形AEFG,边FGBC交于点H(如图).试问线段HG与线段HB相等吗?请先观察猜想,然后再证明你的猜想.

【答案】解:

证法1:连结

四边形都是正方形.

由题意知,又

证法2:连结

四边形都是正方形,

由题意知

【解析】

试题要证明HGHB是否相等,可以把线段放在两个三角形中证明这两个三角形全等,或放在一个三角形中证明这个三角形是等腰三角形,而图中没有这样的三角形,因此需要作辅助线,构造三角形.

试题解析:HG=HB

证法1:连接AH

四边形ABCDAEFG都是正方形,

∴∠B=∠G=90°

由题意知AG=AB,又AH=AH

∴Rt△AGH≌Rt△ABHHL),

∴HG=HB

证法2:连接GB

四边形ABCDAEFG都是正方形,

∴∠ABC=∠AGF=90°

由题意知AB=AG

∴∠AGB=∠ABG

∴∠HGB=∠HBG

∴HG=HB

考点;1.正方形的性质;2.全等三角形的判定.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线C1yax+225的顶点为P,与x轴相较于AB两点(点A在点B的左侧),且点B的坐标为(10

1)求抛物线C1的函数解析式;

2)如图,抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,抛物线C3的顶点为M,当点PM关于点O成中心对称时.①求点M的坐标;②求抛物线C3的解析式;

3)在(2)的条件下,设抛物线C3x轴的正半轴交于点D,在直线PD的上方的抛物线C3上,是否存在点Q使得PDQ的面积最大?若存在,求出当点Q的横坐标为何值时PDQ面积最大,若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若函数关于的反比例函数。

1)求的值;

2)函数图象在哪些象限?在每个象限内,的增大而怎样变化?

3)当时,求的取值范围。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商家销售一款商品,进价每件80元,售价每件145元,每天销售40件,每销售一件需支付给商场管理费5元,未来一个月30天计算,这款商品将开展每天降价1的促销活动,即从第一天开始每天的单价均比前一天降低1元,通过市场调查发现,该商品单价每降1元,每天销售量增加2件,设第xx为整数的销售量为y件.

直接写出yx的函数关系式;

设第x天的利润为w元,试求出wx之间的函数关系式,并求出哪一天的利润最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某自行车行销售甲、乙两种品牌的自行车,若购进甲品牌自行车5辆,乙品牌自行车6辆,需要进货款9500元,若购进甲品牌自行车3辆,乙品牌自行车2辆,需要进货款4500元.

1)求甲、乙两种品牌自行车每辆进货价分别为多少元;

2)今年夏天,车行决定购进甲、乙两种品牌自行车共50辆,在销售过程中,甲品牌自行车的利润率为,乙品牌自行车的利润率为,若将所购进的自行车全部销售完毕后其利润不少于29500,那么此次最多购进多少辆乙种品牌自行车?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场为了吸引顾客,设立了一个可以自由转动的转盘,如图所示,并规定:顾客消费200元(含200元)以上,就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准九折、八折、七折区域,顾客就可以获得此项优惠,如果指针恰好在分割线上时,则需重新转动转盘.

1)某顾客正好消费220元,他转一次转盘,他获得九折、八折、七折优惠的概率分别是多少?

2)某顾客消费中获得了转动一次转盘的机会,实际付费168元,请问他消费所购物品的原价应为多少元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题9分)如图,的直径,上一点,连接.过点的切线,交的延长线于点,在上取一点,使,连接,交于点.请补全图形并解决下面的问题:

1)求证:

2)如果,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】规定:sin﹣x=﹣sinxcos﹣x=cosxsinx+y=sinxcosy+cosxsiny

据此判断下列等式成立的是 (写出所有正确的序号)

①cos﹣60°=﹣

②sin75°=

③sin2x=2sinxcosx

④sinx﹣y=sinxcosy﹣cosxsiny

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴交于两点,与轴交于点,且.

1)求抛物线的解析式及顶点的坐标;

2)判断的形状,证明你的结论;

3)点是抛物线对称轴上的一个动点,当周长最小时,求点的坐标及的最小周长.

查看答案和解析>>

同步练习册答案