【题目】有一组互不全等的三角形,它们的边长均为整数,每个三角形有两条边的长分别为5和7.
(1)请写出其中一个三角形的第三边的长;
(2)设组中最多有n个三角形,求n的值;
(3)当这组三角形个数最多时,从中任取一个,求该三角形周长为偶数的概率.
【答案】
(1)解:设三角形的第三边为x,
∵每个三角形有两条边的长分别为5和7,
∴7﹣5<x<5+7,
∴2<x<12,
∴其中一个三角形的第三边的长可以为10
(2)解:∵2<x<12,它们的边长均为整数,
∴x=3,4,5,6,7,8,9,10,11,
∴组中最多有9个三角形,
∴n=9
(3)解:∵当x=4,6,8,10时,该三角形周长为偶数,
又∵有9个三角形,
∴该三角形周长为偶数的概率是 ![]()
【解析】(1)设三角形的第三边为x,根据三角形的三边关系列出不等式组,再解不等式组即可;(2)求出x的所有整数值,即可求出n的值;(3)先求出该三角形周长为偶数的所有情况,再除以总的个数,即可求出答案.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,直线y=--
x+8与x轴,y轴分别交于点A,点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.
(1)求AB的长和点C的坐标;
(2)求直线CD的表达式.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在Rt△ABC中,∠ACB=90°,M是边AB的中点,连接CM并延长到点E,使得EM=
AB,D是边AC上一点,且AD=BC,联结DE,求∠CDE的度数.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AC=BC,∠ACB=90°,D为△ABC内一点, ∠BAD=15°,AD=AC,CE⊥AD于E,且CE=5.
(1)求BC的长;
(2)求证:BD=CD.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:A、O、B三点在同一条直线上,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.
![]()
(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB上,此时三角板旋转的角度为 度;
(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;
(3)将图1中的三角板绕点O按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM所在直线恰好平分∠BOC时,时间t的值为 (直接写结果).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,BA=BC,∠B=120°,线段AB的垂直平分线MN交AC于点D,且AD=8cm.求:
(1)∠ADG的度数;
(2)线段DC的长度.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AE切⊙O于点E,AT交⊙O于点M,N,线段OE交AT于点C,OB⊥AT于点B,已知∠EAT=30°,AE=3
,MN=2
.![]()
(1)求∠COB的度数;
(2)求⊙O的半径R;
(3)点F在⊙O上(
是劣弧),且EF=5,把△OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合.在EF的同一侧,这样的三角形共有多少个?你能在其中找出另一个顶点在⊙O上的三角形吗?请在图中画出这个三角形,并求出这个三角形与△OBC的周长之比.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是一个正方体的表面展开图,请回答下列问题:
(1)与面B、C相对的面分别是 ;
(2)若A=a3+a2b+3,B=a2b﹣3,C=a3﹣1,D=﹣(a2b﹣6),且相对两个面所表示的代数式的和都相等,求E、F分别代表的代数式.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=4,AC=6,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC分别交AB、AC于M、N,则△AMN的周长为( )
![]()
A. 10 B. 6 C. 4 D. 不确定
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com