精英家教网 > 初中数学 > 题目详情
(2014•金山区一模)在Rt△ABC中,∠C=90°,cosB=
3
5
,把这个直角三角形绕顶点C旋转后得到Rt△A′B′C,其中点B′正好落在AB上,A′B′与AC相交于点D,那么
B′D
CD
=
7
20
7
20
分析:作CH⊥AB于H,先在Rt△ABC中,根据余弦的定义得到cosB=
BC
AB
=
3
5
,设BC=3x,则AB=4x,再根据勾股定理计算出AC=4x,在Rt△HBC中,根据余弦的定义可计算出BH=
9
5
x,接着根据旋转的性质得CA′=CA=4x,CB′=CB,∠A′=∠A,所以根据等腰三角形的性质有B′H=BH=
9
5
x,则AB′=
7
5
x,然后证明△ADB′∽△A′DC,再利用相似比可计算出B′D与DC的比值.
解答:解:作CH⊥AB于H,如图,
在Rt△ABC中,∠C=90°,cosB=
BC
AB
=
3
5
,设BC=3x,则AB=5x,
AC=
AB2-BC2
=4x,
在Rt△HBC中,cosB=
BH
BC
=
3
5
,而BC=3x,
∴BH=
9
5
x,
∵Rt△ABC绕顶点C旋转后得到Rt△A′B′C,其中点B′正好落在AB上,
∴CA′=CA=4x,CB′=CB,∠A′=∠A,
∵CH⊥BB′,
∴B′H=BH=
9
5
x,
∴AB′=AB-B′H-BH=
7
5
x,
∵∠ADB′=∠A′DC,∠A′=∠A,
∴△ADB′∽△A′DC,
AB′
A′C
=
B′D
DC
,即
7
5
x
4x
=
B′D
DC

B′D
DC
=
7
20

故答案为
7
20
点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了三角形相似的判定与性质以及锐角三角形函数.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2014•金山区一模)已知在△ABC中,点D、E分别在边AB、AC上,DE∥BC,
AD
AB
=
3
5
,那么
AE
CE
的值等于
3
2
3
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2014•金山区一模)两个相似三角形的面积比为1:4,那么这两个三角形的周长比为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2014•金山区一模)如果向量
a
与单位向量
e
方向相反,且长度为
1
2
,那么向量
a
用单位向量
e
表示为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2014•金山区一模)将抛物线y=x2向右平移1个单位,所得新抛物线的函数解析式是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2014•金山区一模)在Rt△ABC中,∠A=90°,如果把这个直角三角形的各边长都扩大2倍,那么所得到的直角三角形中,∠B的正切值(  )

查看答案和解析>>

同步练习册答案