【题目】在
中,
,
,
,垂足为
,且
.
,其两边分别交边
,
于点
,
.
(1)求证:
是等边三角形;
(2)求证:
.
![]()
【答案】(1)详见解析;(2)详见解析.
【解析】
(1)连接BD,根据等腰三角形性质得∠BAD=∠DAC=
×120°,再根据等边三角形判定可得结论;
(2)根据等边三角形性质得∠ABD=∠ADB=60°,BD=AD,证△BDE≌△ADF(ASA)可得.
(1)证明:连接BD,
∵AB=AC,AD⊥BC,
∴∠BAD=∠DAC=
∠BAC,
∵∠BAC=120°,
∴∠BAD=∠DAC=
×120°=60°,
∵AD=AB,
∴△ABD是等边三角形;![]()
(2)证明:∵△ABD是等边三角形,
∴∠ABD=∠ADB=60°,BD=AD
∵∠EDF=60°,
∴∠BDE=∠ADF,
在△BDE与△ADF中,
,
∴△BDE≌△ADF(ASA),
∴BE=AF.
科目:初中数学 来源: 题型:
【题目】如图,△ABC 是等边三角形,D 为 CB 延长线上一点,E 为 BC 延长线上点.
(1)当 BD、BC 和 CE 满足什么条件时,△ADB∽△EAC?
(2)当△ADB∽△EAC 时,求∠DAE 的度数.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两位同学做抛骰子(均匀正方体形状)实验,他们共抛了60次,出现向上点数的次数如表:
向上点数 | 1 | 2 | 3 | 4 | 5 | 6 |
出现次数 | 8 | 10 | 7 | 9 | 16 | 10 |
(1)计算出现向上点数为6的频率.
(2)丙说:“如果抛600次,那么出现向上点数为6的次数一定是100次.”请判断丙的说法是否正确并说明理由.
(3)如果甲乙两同学各抛一枚骰子,求出现向上点数之和为3的倍数的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系内,已知点
的坐标是
,点
的坐标是
,
![]()
(1)图中点
的坐标是________.
(2)点
关于
轴对称的点
的坐标是______,并作出四边形
.
(3)求四边形
的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣
x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.
(1)求抛物线的解析式;
(2)求PE的长最大时m的值.
(3)Q是平面直角坐标系内一点,在(2)的情况下,以PQCD为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线L:y=
x2+bx﹣2与x轴相交于A、B两点(点A在点B的左侧),并与y轴相交于点C.且点A的坐标是(﹣1,0).
(1)求该抛物线的函数表达式及顶点D的坐标;
(2)判断△ABC的形状,并求出△ABC的面积;
(3)将抛物线向左或向右平移,得到抛物线L′,L′与x轴相交于A'、B′两点(点A′在点B′的左侧),并与y轴相交于点C′,要使△A'B′C′和△ABC的面积相等,求所有满足条件的抛物线的函数表达式.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣
x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.
(1)求抛物线的解析式;
(2)求PE的长最大时m的值.
(3)Q是平面直角坐标系内一点,在(2)的情况下,以PQCD为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=7,AC=6,∠A=45°,点D、E分别在边AB、BC上,将△BDE沿着DE所在直线翻折,点B落在点P处,PD、PE分别交边AC于点M、N,如果AD=2,PD⊥AB,垂足为点D,那么MN的长是_____.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+4 经过点A(﹣3,0),点 B 在抛物线上,CB∥x轴,且AB 平分∠CAO.则此抛物线的解析式是___________.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com