【题目】若一组数据
,
,
的平均数为4,方差为3,那么数据
,
,
的平均数和方差分别是( )
A. 4, 3 B. 6
3 C. 3
4 D. 6
5
【答案】B
【解析】根据数据a1,a2,a3的平均数为4可知
(a1+a2+a3)=4,据此可得出
(a1+2+a2+2+a3+2)的值;再由方差为3可得出数据a1+2,a2+2,a3+2的方差.
∵数据a1,a2,a3的平均数为4,
∴
(a1+a2+a3)=4,
∴
(a1+2+a2+2+a3+2)=
(a1+a2+a3)+2=4+2=6,
∴数据a1+2,a2+2,a3+2的平均数是6;
∵数据a1,a2,a3的方差为3,
∴
[(a1-4)2+(a2-4)2+(a3-4)2]=3,
∴a1+2,a2+2,a3+2的方差为:
[(a1+2-6)2+(a2+2-6)2+(a3+2-6)2]
=
[(a1-4)2+(a2-4)2+(a3-4)2]
=3.
故选:B.
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,G为BC边上一点,BE⊥AG于E,DF⊥AG于F,连接DE.
(1)求证:△ABE≌△DAF;
(2)若AF=1,四边形ABED的面积为6,求EF的长.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,长方形ABCD中,∠DAB=∠B=∠DCB=∠D=90°,AD=BC=6,AB=CD=10.点E为射线DC上的一个动点,把△ADE沿直线AE翻折得△AD′E.
![]()
(1)当D′点落在AB边上时,∠DAE= °;
(2)如图2,当E点与C点重合时,D′C与AB交点F,
①求证:AF=FC;②求AF长.
(3)连接D′B,当∠AD′B=90°时,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“8字”的性质及应用:
(1)如图①,AD、BC相交于点O,得到一个“8字”ABCD,求证:∠A+∠B=∠C+∠D.
(2)图②中共有多少个“8字”?
(3)如图②,∠ABC和∠ADC的平分线相交于点E,利用(1)中的结论证明∠E=
(∠A+∠C).
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,BD∥GE,AQ 平分∠FAC,交 BD 于 Q,∠GFA=50°,∠Q=25°,则∠ACB 的 度数( )
![]()
A. 90° B. 95° C. 100° D. 105°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,下列4个三角形中,均有AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是( )
![]()
A. ①③B. ①②④C. ①③④D. ①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数
的图象过点
,一次函数
的图象
经过点
.
(1)求
值并写出二次函数表达式;
(2)求
值;
(3)设直线
与二次函数图象交于
两点,过
作
垂直
轴于点
,
试证明:
;
(4)在(3)的条件下,请判断以线段
为直径的圆与
轴的位置关系,并说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(12分)如图,矩形ABCD,AB=6cm,AD=2cm,点P以2cm/s的速度从顶点A出发沿折线A-B-C向点C运动,同时点Q以lcm/s的速度从顶点C出发向点D运动,当其中一个动点到达末端停止运动时,另一点也停止运动.
(1)问两动点运动几秒,使四边形PBCQ的面积是矩形ABCD面积的
;
(2)问两动点经过多长时间使得点P与点Q之间的距离为
?若存在,
求出运动所需的时间;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h(甲车休息前后的速度相同),甲、乙两车行驶的路程y(km)与行驶的时间x(h)的函数图象如图所示.根据图象的信息有如下四个说法:
![]()
①甲车行驶40千米开始休息
②乙车行驶3.5小时与甲车相遇
③甲车比乙车晚2.5小时到到B地
④两车相距50km时乙车行驶了
小时
其中正确的说法有( )
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com