精英家教网 > 初中数学 > 题目详情
(五005•枣庄)已知抛物线y=(1-0)x+8x+b的图象的的部分八图所示,抛物的顶点在第的象限,且经过点0(0,-7)和点B.
(1)求0的取值范围;
(五)若O0=五OB,求抛物线的解析式.
(5)由图可知,b=-7.(5分)
故抛物线为y=(5-a)x4+9x-7.
又因抛物线的顶点在第一象限,开9向z,
所以抛物线与x轴有两个不同的交点.
5-a<口
94-8(5-a)(-7)>口

解之,得5<a<
49
7
.(9分)
即a的取值范围是5<a<
49
7
.(6分)

(4)设B(x5,口),
由OA=4口B,
得7=4x5,即x5=
7
4
.(7分)
由于x5=
7
4
,方程(5-a)x4+9x-7=口的一个根,
∴(5-a)(
7
4
4+9×
7
4
-7=口
a=
59
7
.(9分)
故所求所抛物线解析式为y=-
54
7
x4+9x-7.(5口分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=x2-mx+m-2.
(1)求证:无论m为任何实数,该二次函数的图象与x轴都有两个交点;
(2)当该二次函数的图象经过点(3,6)时,求二次函数的解析式;
(3)将直线y=x向下平移2个单位长度后与(2)中的抛物线交于A、B两点(点A在点B的左边),一个动点P自A点出发,先到达抛物线的对称轴上的某点E,再到达x轴上的某点F,最后运动到点B.求使点P运动的总路径最短的点E、点F的坐标,并求出这个最短总路径的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=-
1
2
x2+bx+4
上有不同的两点E(k+3,-k2+1)和F(-k-1,-k2+1).
(1)求抛物线的解析式;
(2)如图,抛物线y=-
1
2
x2+bx+4
与x轴和y轴的正半轴分别交于点A和B,M为AB的中点,∠PMQ在AB的同侧以M为中心旋转,且∠PMQ=45°,MP交y轴于点C,MQ交x轴于点D.设AD的长为m(m>0),BC的长为n,求n和m之间的函数关系式;
(3)当m,n为何值时,∠PMQ的边过点F?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,二次函数y1=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,且点B的坐标为(1,0),点C的坐标为(0,-3),一次函数y2=mx+n的图象过点A、C.
(1)求二次函数的解析式;
(2)求二次函数的图象与x轴的另一个交点A的坐标;
(3)根据图象写出y2<y1时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=-x2+mx+3与x轴的一个交点A(3,0).
(1)你一定能分别求出这条抛物线与x轴的另一个交点B及与y轴的交点C的坐标,试试看;
(2)设抛物线的顶点为D,请在图中画出抛物线的草图.若点E(-2,n)在直线BC上,试判断E点是否在经过D点的反比例函数的图象上,把你的判断过程写出来;
(3)请设法求出tan∠DAC的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,抛物线y=-x2-(m-1)x+m2-6交x轴负半轴于点A,交y轴正半轴于点B(0,3),顶点C位于第二象限,连接AB,AC,BC.
(1)求抛物线的解析式;
(2)点D是y轴正半轴上一点,且在B点上方,若∠DCB=∠CAB,请你猜想并证明CD与AC的位置关系;
(3)设与△AOB重合的△EFG从△AOB的位置出发,沿x轴负方向平移t个单位长度(0<t≤3)时,△EFG与△ABC重叠部分的面积为S,求S与t之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,以O为原点的直角坐标系中,A点的坐标为(0,3),直线x=-3交x轴于点B,P为线段AB上一动点,作直线PC⊥PO,交于直线x=-3于点C.过P点作直线MN平行于x轴,交y轴于M,交直线x=-3于点N.
(1)当点C在第二象限时,求证:△OPM≌△PCN;
(2)设AP长为m,以P、O、B、C为顶点的四边形的面积为S,请求出S与M之间的函数关系式,并写出自变量m的取值范围;
(3)当点P在线段AB上移动时,点C也随之在直线x=-3上移动,△PBC是否可能成为等腰三角形?如果可能,求出所有能使△PBC成为等腰三角形的点P的坐标;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y=-
1
40
x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是______米.(精确到1米)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图:已知抛物线y=
1
4
x2+
3
2
x-4与x轴交于A,B两点,与y轴交于点C,O为坐标原点.
(1)求A,B,C三点的坐标;
(2)已知矩形DEFG的一条边DE在AB上,顶点F,G分别在线段BC,AC上,设OD=m,矩形DEFG的面积为S,求S与m的函数关系式,并指出m的取值范围;
(3)当矩形DEFG的面积S取最大值时,连接对角线DF并延长至点M,使FM=
2
5
DF.试探究此时点M是否在抛物线上,请说明理由.

查看答案和解析>>

同步练习册答案