精英家教网 > 初中数学 > 题目详情

如图,直线y=-x+1与x轴交于点A,与y轴交于点B,点P(a,b)为双曲线数学公式上的一点,射线PM⊥x轴于点M,交直线AB于点E,射线PN⊥y轴于点N,交直线AB于点F.
(1)直接写出点E与点F的坐标(用含a、b的代数式表示);
(2)当x>0,且直线AB与线段PN、线段PM都有交点时,设经过E、P、F三点的圆与线段OE相交于点T,连结FT,求证:以点F为圆心,以FT的长为半径的⊙F与OE相切;
(3)①当点P在双曲线第一象限的图象上移动时,求∠EOF的度数;
②当点P在双曲线第三象限的图象上移动时,请直接写出∠EOF的度数.

解:(1)E(a,1-a),F(1-b,b).

(2)∵PM⊥x轴,PN⊥y轴,
∴四边形NOMP是矩形,
∴∠P=90°,
∴EF是⊙Q的直径.(不妨设经过E、P、F三点的圆为⊙Q),
∴∠FTE=90°,
∴FT⊥OE,
又∵OE经过半径FT的外端T,
∴OE是⊙F的切线.

(3)①由直线y=-x+1可求得:B(0,1),A(1,0),即△ABO是等腰直角三角形,如图所示,
由(1)得:E(a,1-a),F(1-b,b),
则PF=PN-FN=a-(1-b)=a+b-1,PE=PM-EM=b-(1-a)=a+b-1,
在Rt△PEF中,由勾股定理得:
同理可得:
∴OE2=2a2-2a+1,
∵P(a,b)在反比例函数图象上,
,即2ab=1,

∴EF•BE=OE2,即
又∵∠OEF=∠BEO,
∴△OEF∽△BEO.
∴∠EOF=∠ABO=45°,
综上可得:∠EOF的度数是45°.
②如图所示:根据①的证明过程可得:△OE'F'∽△BE'O,
故可得∠E'OF'=∠E'BO=180°-∠ABO=135°,
故当点P在双曲线第三象限的图象上移动时∠EOF的度数是135°.
分析:(1)点E和点P的横坐标相等,点F和点P的纵坐标相等,代入直线解析式,可得出点E与点F的坐标;
(2)根据圆周角定理可得∠FTE=90°,结合FT是⊙F的直径,可判断出结论;
(3)①根据(1)所求的坐标,表示出PF、PE,利用勾股定理求出EF、OE、BE,及EF×BE的值,结合点P(a,b)在反比例函数上,可得2ab=1,继而可推出EF•BE=OE2,证明△OEF∽△BEO,即可得出∠EOF的度数.
②根据①相似三角形判定的过程,可证明△OE'F'∽△BE'O,继而可得出此时∠EOF的度数.
点评:此题考查了反比例函数的综合题,融合了矩形、等腰直角三角形、三角形面积的求法、两点间的距离公式、相似三角形的判定和性质等重要知识,难点在于第三问,熟练掌握相似三角形的判定是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,直线:y1=kx+b与抛物线:y2=x2+bx+c交于点A(-2,4),B(8,2).精英家教网
(1)求出直线解析式;
(2)求出使y1>y2的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

13、如图,直线a、b都与直线c相交,给出下列条件:(1)∠l=∠2;(2)∠3=∠6;(3)∠4+∠7=180°;(4)∠5+∠8=180°,其中能判断a∥b的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

4、如图,直线AB、CD相交于点E,EF⊥AB于E,若∠CEF=59°,则∠AED的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直线y=6-x交x轴、y轴于A、B两点,P是反比例函数y=
4
x
(x>0)
图象上位于直线下方的一点,过点P作x轴的垂线,垂足为点M,交AB于点E,过点P作y轴的垂线,垂足为点N,交AB于点F.则AF•BE=(  )
A、8
B、6
C、4
D、6
2

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,直线a∥c,b∥c,直线d与直线a、b、c相交,已知∠1=60°,求∠2、∠3的度数(可在图中用数字表示角).

查看答案和解析>>

同步练习册答案