精英家教网 > 初中数学 > 题目详情

如图,设P是等边三角形ABC内任意一点,试说明:PA<PB+PC.

 

【答案】

见解析

【解析】

试题分析:把△ABP绕点B顺时针旋转60°,即可得到△BPQ为等边三角形,则PB=PQ,再根据三角形的任两边之和大于第三边,即可证得结论。

如图,把△ABP绕点B顺时针旋转60°,

则PA=QC,PB=QB,∠PBQ=60°,

∴△BPQ为等边三角形,

∴PB=PQ,

∵QC<PQ+PC,

∴PA<PB+PC.

考点:本题考查的是旋转的性质

点评:解答本题的关键是掌握旋转的性质:旋转前后图形的形状,大小没有变化,对应边、角相等。同时要明确三个要素:旋转中心、旋转方向、旋转角度.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等边三角形,固定点E为AB的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆.
(1)当MN和AB之间的距离为0.5米时,求此时△EMN的面积;
(2)设MN与AB之间的距离为x米,试将△EMN的面积S(平方米)表示成关于x的函数;
(3)请你探究△EMN的面积S(平方米)有无最大值?若有,请求出这个最大值;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•莱芜)某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等边三角形,固定点E为AB的中点.MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆,△EMN是随MN滑动而变化的三角通风窗(阴影部分均不通风).
(1)当MN和AB之间的距离为0.5米时,求此时△EMN的面积.
(2)设MN与AB之间的距离为x米,试将△EMN的面积S(平方米)表示成关于x的函数.
(3)请你探究△EMN的面积S(平方米)有无最大值?若有,请求出这个最大值;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年山东省莱芜市中考数学试卷(解析版) 题型:解答题

某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等边三角形,固定点E为AB的中点.MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆,△EMN是随MN滑动而变化的三角通风窗(阴影部分均不通风).
(1)当MN和AB之间的距离为0.5米时,求此时△EMN的面积.
(2)设MN与AB之间的距离为x米,试将△EMN的面积S(平方米)表示成关于x的函数.
(3)请你探究△EMN的面积S(平方米)有无最大值?若有,请求出这个最大值;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等边三角形,固定点E为AB的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆.
(1)当MN和AB之间的距离为0.5米时,求此时△EMN的面积;
(2)设MN与AB之间的距离为x米,试将△EMN的面积S(平方米)表示成关于x的函数;
(3)请你探究△EMN的面积S(平方米)有无最大值?若有,请求出这个最大值;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》中考题集(24):2.8 二次函数的应用(解析版) 题型:解答题

某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等边三角形,固定点E为AB的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆.
(1)当MN和AB之间的距离为0.5米时,求此时△EMN的面积;
(2)设MN与AB之间的距离为x米,试将△EMN的面积S(平方米)表示成关于x的函数;
(3)请你探究△EMN的面积S(平方米)有无最大值?若有,请求出这个最大值;若没有,请说明理由.

查看答案和解析>>

同步练习册答案