【题目】已知两直线
与![]()
(1)在同一平面直角坐标系中作出两直线的图象;
(2)求出两直线的交点;
(3)根据图象指出x为何值时,
;
(4)求这两条直线与x轴围成的三角形面积.
![]()
科目:初中数学 来源: 题型:
【题目】(背景知识)
数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点
、点
表示的数分别为
、
,则
、
两点之间的距离
,线段
的中点表示的数为
.
(问题情境)
如图,数轴上点
表示的数为
,点
表示的数为8,点
从点
出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点
从点
出发,以每秒2个单位长度的速度向左匀速运动,设运动时间为
秒(
).
(综合运用)
(1)填空:
①
、
两点之间的距离
________,线段
的中点表示的数为__________.
②用含
的代数式表示:
秒后,点
表示的数为____________;点
表示的数为___________.
③当
_________时,
、
两点相遇,相遇点所表示的数为__________.
(2)当
为何值时,
.
(3)若点
为
的中点,点
为
的中点,点
在运动过程中,线段
的长度是否发生变化?若变化,请说明理由;若不变,请求出线段
的长.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数
的图象与反比例函数
(
为常数,且
)的图象都经过点A(m,2).
![]()
(1)求点A的坐标及反比例函数的表达式;
(2)设一次函数
的图象与x轴交于点B,若点P是x轴上一点,且满足△ABP的面积是2,直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点D、E、F分别是边AB、AC、BC的中点,且BC=2AF。
![]()
(1)求证:四边形ADEF为矩形;
(2)若∠C=30°、AF=2,写出矩形ADEF的周长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数轴上有
,
,
三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“关联点”.例如数轴上点
,
,
所表示的数分别为1, 3,4,此时点
是点
,
的“关联点”.
![]()
(1)若点
表示数-2,点
表示数1,下列各数-1, 2, 4, 6所对应的点分别是
,
,
,
,其中是点
,
的“关联点”的是
(2)点
表示数-10,点
表示数15,
为数轴上一个动点:
①若点
在点
的左侧,且点
是点
,
的“关联点”,求此时点
表示的数;
②若点
在点
的右侧,点
,
,
中,有一个点恰好是其它两个点的“关联点”,请直接写出此时点
表示的数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在□ABCD中,E、F分别为BC、AD的中点,AE、CF分别交BD于点M、N,则四边形 AMCN与□ABCD的面积比为( )
![]()
A.
B.
C.
D. ![]()
【答案】B
【解析】分析:根据平行四边形一顶点和对边中点的连线一定三等分平行四边形的一对角线,可得:
即可得出结论.
详解:由题意可得:M、N为线段BD的三等分点,
∴
![]()
故选B.
点睛:平行四边形一顶点和对边中点的连续一定三等分平行四边形的一对角线.
【题型】单选题
【结束】
10
【题目】如图,在平面直角坐标系xOy中,A(2,0),B(0,2),点M在线段AB上,记MO+MP最小值的平方为s,当点P沿x轴正向从点O运动到点A时(设点P的横坐标为x),s关于x的函数图象大致为( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】个体户小王在上周日以每千克4元买进金佛山鲜笋
,进入农贸市场后共占5个摊位,每个摊位最多容纳
鲜笋,每个摊位的市场管理价为每天20元,下表为本周内鲜笋每天的销售价格与前一天相比价格的涨跌情况(涨记为正,跌记为负).星期一的价格是在周日每千克4元买进价格基础上涨了1.3元.
星期 | 一 | 二 | 三 | 四 | 五 |
与前一天相比价格的涨跌情况/元 | +1.3 | -0.1 | +0.25 | +0.2 | -0.5 |
当天的交易量/ | 2500 | 2000 | 3000 | 1500 | 1000 |
(1)鲜笋销售最高价格为每千克多少元?
(2)小王在上周日以每千克4元买进金佛山解笋
,进入批发市场后共占5个摊位,小王在销售过程中采用逐步减少摊位个数的方法来降低成本,增加收益,这样他在本周的买卖中共赚了多少钱?请你帮他算一算?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com