精英家教网 > 初中数学 > 题目详情
(2004•丽水)如图,在等腰梯形ABCD中,AD∥BC,AC、BD相交于点O,有如下四个结论:①AC=BD;②梯形ABCD是中心对称图形;③∠ADB=∠DAC;④△AOD∽△COB.
请把正确结论的序号填写在横线上   
【答案】分析:根据等腰梯形的性质对各个结论进行分析从而确定最后答案.
解答:解:等腰梯形的对角线相等,并且易证△ABD≌△DCA,因而∠ADB=∠DAC,同时AOD和△COB是两个顶角相等的等腰三角形,因而易证AOD∽△COB,因而正确的是①③④.
点评:本题主要考查的等腰梯形的性质的理解及运用.
练习册系列答案
相关习题

科目:初中数学 来源:2004年全国中考数学试题汇编《二次函数》(05)(解析版) 题型:解答题

(2004•丽水)如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P从点O开始沿OA边向点A以1厘米/秒的速度移动;点Q从点B开始沿BO边向点O以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间(0≤t≤6),那么
(1)设△POQ的面积为y,求y关于t的函数解析式;
(2)当△POQ的面积最大时,将△POQ沿直线PQ翻折后得到△PCQ,试判断点C是否落在直线AB上,并说明理由;
(3)当t为何值时,△POQ与△AOB相似.

查看答案和解析>>

科目:初中数学 来源:2004年浙江省丽水市中考数学试卷(解析版) 题型:解答题

(2004•丽水)如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P从点O开始沿OA边向点A以1厘米/秒的速度移动;点Q从点B开始沿BO边向点O以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间(0≤t≤6),那么
(1)设△POQ的面积为y,求y关于t的函数解析式;
(2)当△POQ的面积最大时,将△POQ沿直线PQ翻折后得到△PCQ,试判断点C是否落在直线AB上,并说明理由;
(3)当t为何值时,△POQ与△AOB相似.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《圆》(08)(解析版) 题型:填空题

(2004•丽水)如图,过⊙O外一点P作两条割线,分别交⊙O于A,B和C,D.已知PA=2,PB=5,PD=8,则PC的长是   

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《圆》(03)(解析版) 题型:选择题

(2004•丽水)如图,已知△ABC是⊙O的内接三角形,AD是⊙O的切线,点A为切点,∠ACB=60°,则∠DAB的度数是( )

A.30°
B.45°
C.60°
D.120°

查看答案和解析>>

科目:初中数学 来源:2004年浙江省丽水市中考数学试卷(解析版) 题型:选择题

(2004•丽水)如图,⊙O是正五边形ABCDE的外接圆,则正五边形的中心角∠AOB的度数是( )

A.72°
B.60°
C.54°
D.36°

查看答案和解析>>

同步练习册答案