精英家教网 > 初中数学 > 题目详情
6.在△ADB和△AEC中,AD=AE,∠DAE=α,∠AEC=∠ADB=90°,BD=kCE,延长ED交BC于点F.
(1)如图1,当k=1时,是否存在与BF相等的线段?若存在,请找出,并加以证明;若不存在,说明理由.
(2)如图2,当k≠1时,猜想并证明EC,ED,EF的数量关系(用含k,α的式子表示).

分析 (1)结论:BF=FC.首先证明△△BDN≌△CEM,得BN=CM,再证明△CFM≌△BFN,即可证明.
(2)结论:2EC•cos$\frac{1}{2}$α+ED=(k+1)EF.如图2中,作AH⊥EF于H,CM⊥EF于M,BN⊥EF于N.由△BDN∽△CEM,得$\frac{BD}{EC}$=$\frac{BN}{MC}$=k,由CM∥BN,得$\frac{FN}{FM}$=$\frac{BN}{CM}$=k,推出MF=$\frac{1}{k+1}$MN,再证明∠BDN=∠CEM=$\frac{1}{2}$α,推出EM=EC•cos$\frac{1}{2}$α,DN=BD•cos$\frac{1}{2}$α,EN=ED+DN=ED+BD•cos$\frac{1}{2}$α,MN=EN-EM=ED+k•EC•cos$\frac{1}{2}$α-EC•cos$\frac{1}{2}$α,FM=$\frac{1}{k+1}$•(ED+k•EC•cos$\frac{1}{2}$α-EC•cos$\frac{1}{2}$α),根据EF=EM+FM即可证明.

解答 解:(1)结论:BF=FC.理由如下,
如图1中,作CM⊥EF于M,BN⊥EF于N.

∵AE=AD,
∴∠AED=∠ADE,
∵∠ADB=∠AEC=90°,
∴∠ADE+∠BDN=90°,∠CEM+∠AED=90°,
∴∠CEM=∠BDN,
∵k=1,BD=kEC,
∴BD=EC,
∵BN⊥EF,CM⊥EF,
∴∠N=∠CME=90°,NB∥CM,
在△BDN和△CEM中,
$\left\{\begin{array}{l}{∠BDN=∠MEC}\\{∠BDN=∠MEC}\\{BD=EC}\end{array}\right.$,
∴△BDN≌△CEM,
∴BN=CM,
在△CFM和△BFN中,
$\left\{\begin{array}{l}{∠CMF=∠BNF}\\{∠CFM=∠BFN}\\{CM=BN}\end{array}\right.$,
∴△CFM≌△BFN,
∴BF=CF.

(2)结论:2EC•cos$\frac{1}{2}$α+ED=(k+1)EF.
如图2中,作AH⊥EF于H,CM⊥EF于M,BN⊥EF于N.

由(1)可知∠BDN=∠MEC,∵∠EMC=∠BND,
∴△BDN∽△CEM,
∴$\frac{BD}{EC}$=$\frac{BN}{MC}$=k,
∵CM∥BN,
∴$\frac{FN}{FM}$=$\frac{BN}{CM}$=k,
∴MF=$\frac{1}{k+1}$MN,
∵AE=AD,AH⊥ED,
∴∠HAE=∠HAD=$\frac{1}{2}$α,
∵∠EAH+∠AEH=90°,∠AEH+∠CEM=90°,
∴∠BDN=∠CEM=$\frac{1}{2}$α,
∴EM=EC•cos$\frac{1}{2}$α,DN=BD•cos$\frac{1}{2}$α,
∴EN=ED+DN=ED+BD•cos$\frac{1}{2}$α,
∴MN=EN-EM=ED+k•EC•cos$\frac{1}{2}$α-EC•cos$\frac{1}{2}$α,
∴FM=$\frac{1}{k+1}$•(ED+k•EC•cos$\frac{1}{2}$α-EC•cos$\frac{1}{2}$α),
∴EF=EM+FM=EC•cos$\frac{1}{2}$α+$\frac{1}{k+1}$(ED+k•EC•cos$\frac{1}{2}$α-EC•cos$\frac{1}{2}$α),
∴EF=$\frac{2}{k+1}$•EC•cos$\frac{1}{2}$α+$\frac{1}{k+1}$•ED,
∴2EC•cos$\frac{1}{2}$α+ED=(k+1)EF.

点评 本题考查全等三角形的判定和性质、相似三角形的判定和性质、锐角三角函数等知识,解题的关键是灵活运用所学知识,学会添加常用辅助线,构造全等三角形或相似三角形,属于中考压轴题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.如图1,在△ABC中,∠ACB=90°,点P为△ABC内一点.

(1)连接PB,PC,将△BCP沿射线CA方向平移,得到△DAE,点B,C,P的对应点分别为点D,A,E,连接CE.
①依题意,请在图2中补全图形;
②如果BP⊥CE,BP=3,AB=6,求CE的长.
(2)如图3,连接PA,PB,PC,求PA+PB+PC的最小值.
小慧的作法是:以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,那么就将PA+PB+PC的值转化为CP+PM+MN的值,连接CN,当点P落在CN上时,此题可解.
请你参考小慧的思路,在图3中证明PA+PB+PC=CP+PM+MN.
并直接写出当AC=BC=4时,PA+PB+PC的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,四边形ABCD内接于⊙O,E为CD延长线上一点.若∠B=110°,则∠ADE的度数为110°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.计算:
(1)-12-|$\frac{1}{2}$-$\frac{2}{3}$|÷$\frac{1}{3}$×[-2-(-3)2];
(2)($\frac{2}{3}$-$\frac{1}{4}$-$\frac{3}{8}$+$\frac{5}{24}$)÷(-$\frac{1}{48}$).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,P是⊙O的直线AB的延长线上的一点,PC与⊙O相切于点C,∠APC的角平分线交AC于点Q,则∠PQC=45°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.下列说法正确的是(  )
A.点(2,4)在函数y=2x+4的图象上
B.已知甲,乙两组数据的个数相同且平均数相等,若甲组数据的方差S2=0.06,乙组数据的方差S2=0.105,则甲的波动比乙的波动小
C.Rt△ABC的边a=3、b=4,则第三边c=5
D.二元一次方程组$\left\{\begin{array}{l}{x+y=3}\\{2x-3y=1}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.-2的相反数是(  )
A.-2B.2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.已知一次函数y=kx+b(k≠0,k,b为常数),x与y的部分对应值如表,则m等于(  )
x-101
y1m-1
A.-1B.0C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.解方程:
(1)x2-5x-14=0           
(2)3x2+1=2$\sqrt{3}$x.

查看答案和解析>>

同步练习册答案