精英家教网 > 初中数学 > 题目详情

如图,Rt△ABC内接于⊙O,AC=BC,∠BAC的平分线AD与⊙0交于点D,与BC交于点E,延长BD,与AC的延长线交于点F,连结CD,G是CD的中点,连结0G.

1.判断0G与CD的位置关系,写出你的结论并证明;

2.求证:AE=BF;

3.若OG·DE=3(2-),求⊙O的面积.

 

 

1.OG⊥CD

2.见解析。

3.6π

解析:本题考查圆的相关内容。如相切等。本题利用等腰三角形的性质证明Rt△ACE≌Rt△BCF然后利用相似和全等求解相关问题。

(1)猜想:OG⊥CD.

证明:如图,连结OC、OD,∵OC=OD,G是CD的中点,

∴由等腰三角形的性质,有CG⊥CD. (3分)

(2)证明: ∵AB是⊙O的直径, ∴∠ACB=90°.

在Rt△ACE和Rt△BCF中

∠CAE=∠CBF, ∠ACE=∠BCF=90°,AC=BC.

∴Rt△ACE≌Rt△BCF

∴AE=BF. (7分)

(3)解:过点O作BD的垂线,垂足为H.则H为BD的中点.

∴OH=AD,即AD=2OH.

又∠CAD=∠BAD ,∴CD=BD, ∴OH=OG.

在Rt△BDE和Rt△ADB中,∠DBE=∠DAC=∠BAD,

∴Rt△BDE∽Rt△ADB, ∴BD=AD·DE=2OG·DE=6(2-)

又BD=FD, ∴BF=2BD. ∴BF=4BD=24(2-).……①

设AC=x,则BC=x,AB=x.

∵AD是∠BAC的平分线,∴∠FAD=∠BAD.

在Rt△ABD和Rt△AFD中,∠ADB=∠ADF=90°,AD=AD,∠FAD=∠BAD,

∴Rt△ABD≌Rt△AFD.∴AF=AB=x-x=(-1)x

在Rt△BCF中BF=BC+CF=x+[(-1)x]=2(2-)x……②

由①、②解得x=2或-2(舍去).

∴AB=x=·2=2.

∴S=π·(2)=6π

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC内有三个内接正方形,DF=18,GK=12,则PQ=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

29、如图,Rt△ABC内接于⊙O,∠A=30°,延长斜边AB到D,使BD等于⊙O半径,求证:DC是⊙O切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC内接于⊙O,∠ACB的平分线分别交AB、⊙O于点D、E.
求证:CD•CE=AC•BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC内接于⊙O.将⊙O沿直径AC对折,B点落在圆上D点处.连接BD交AC于点E,过C点作BD的平行线交AD的延长线于点F.
(1)求证:CF是⊙O的切线;
(2)若sin∠BAC=
35
,DF=3,求⊙O的半径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南通)如图.Rt△ABC内接于⊙O,BC为直径,AB=4,AC=3,D是
AB
的中点,CD与AB的交点为E,则
CE
DE
等于(  )

查看答案和解析>>

同步练习册答案