精英家教网 > 初中数学 > 题目详情
如图,在Rt△ABC中,AB=AC,P是边AB(含端点)上的动点.过P作BC的垂线PR,R为垂足,∠PRB的平分线与AB相交于点S,在线段RS上存在一点T,若以线段PT为一边作正方形PTEF,其顶点E,F恰好分别在边BC,AC上.
(1)请判断BS与PS的长度之间的关系;
(2)请你探索线段TS与PA的长度之间的关系,并证明;
(3)设AB=1,当P在边AB(含端点)上运动时,请你探索正方形PTEF的面积的最小值.
分析:(1)由等腰直角三角形ABC的两个底角相等知∠B=∠C=45°;然后由垂直的定义、三角形内角和推知∠BPR=45°,所以根据等角对等边可以证明△BRP是等腰三角形,由等腰三角形的“三合一”的性质可以证得RS是PB的垂直平分线;
(2)根据全等直角三角形的判定定理AAS证得△FPA≌△PTS;然后由全等三角形的对应边相等即可推知TS=PA;
(3)要求正方形FPTE的面积,那么就要求出它的边长.RS是等腰直角△PRS的高,那么BS=PS,PS=
1-PA
2
,由(2)证得的全等三角形中我们可得出PS=AF,如果设PA=x,正方形PTEF的面积为y,我们就能用x表示出AF的值,直角三角形APF中,我们就能用x表示出PF2,也就得出了y与x的函数关系式,然后确定x的取值范围,x最小时x=PA=0此时P与A重合,S与T重合,E与R重合.x最大时,T与R重合,此时TS=BS=SP=PA,因此PA=
1
3
,那么x的范围就是0≤x≤
1
3
,然后根据函数的性质和自变量的范围求出y的最小值.
解答:解:(1)BS=BS;理由如下:
∵在Rt△ABC中,AB=AC(已知),
∴∠B=∠C=45°(三角形内角和定理);
又∵PR⊥BC(已知),
∴∠SPR=45°(三角形内角和定理),
∴∠B=∠BPR(等量代换),
∴BR=PR(等角对等边);
∵RS是∠PRB的平分线(已知),
∴RS是PB的中垂线(等腰三角形的性质),
∴BS=BS;

(2)PA=TS;证明如下:
由(1)知,RS⊥平板,
∴∠STP+∠SPT=90°(直角三角形的两个锐角互余);
又∵四边形PTEF是正方形,
∴∠FPT=90°(正方形的四个内角都是直角),
∴∠APF+∠SPT=90°(平角的定义),
∴∠APF=∠STP(等量代换);
∴在Rt△FPA和Rt△PTS中,
∠FAP=∠PST=90°
∠APF=∠STP
PF=TP(正方形的边长)

∴Rt△FPA≌Rt△PTS,
∴PA=TS;(全等三角形的对应边相等);

(3)∵由(1)知,RS是等腰Rt△PRB的底边PB上的高,
∴PS=BS,
∴BS+PS+PA=1,
∴PS=
1-PA
2

设PA的长为x,正方形PTEF的面积为y,易知AF=PS,
则y=PF2=PA2+PS2,得y=x2+(
1-x
2
)
2

即y=
5
4
x2-
1
2
x+
1
4

根据二次函数的性质,当x=
1
5
时,y有最小值为
1
5

如图2,当点P运动使得T与R重合时,PA=TS为最大.
易证等腰Rt△PAF≌等腰Rt△PSR≌等腰Rt△BSR,
∴PA=
1
3

如图3,当P与A重合时,得x=0.
∴x的取值范围是0≤x≤
1
3

∴①当x的值由0增大到
1
5
时,y的值由
1
4
减小到
1
5

②当x的值由
1
5
增大到
1
3
时,y的值由
1
5
增大到
2
9

1
5
2
9
1
4

∴在点P的运动过程中,正方形PTEF面积y的最小值是
1
5
点评:本题综合考查了正方形的性质、等腰三角形的判定与性质以及全等三角形的判定与性质.解答(3)题时,注意求出二次函数后,要先讨论出x的取值范围,然后再根据自变量的范围求y的值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•莆田质检)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,点E是AB上一点,以AE为直径的⊙O过点D,且交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分别是∠BAC和∠ABC的平分线,它们相交于点D,求点D到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,将三角板中一个30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC、BC相交于点E、F,且使DE始终与AB垂直.
(1)画出符合条件的图形.连接EF后,写出与△ABC一定相似的三角形;
(2)设AD=x,CF=y.求y与x之间函数解析式,并写出函数的定义域;
(3)如果△CEF与△DEF相似,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,BD⊥AC,sinA=
3
5
,则cos∠CBD的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连接DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以
5
cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).
(1)当点P在线段DE上运动时,线段DP的长为
(t-2)
(t-2)
cm,(用含t的代数式表示).
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.

查看答案和解析>>

同步练习册答案