精英家教网 > 初中数学 > 题目详情

阅读材料:多边形边上或内部的一点与多边形各顶点的连线,将多边形分割成若干个小三角形.下图给出了四边形的具体分割方法,分别将四边形分割成了2个、3个、4个小三角形.

请你按照上述方法将下图中的五边形进行分割,并写出得到的小三角形的个数.试把这一结论推广到n边形.

答案:
解析:

3,4,5.n边形按上述步骤操作可分成三角形(n-2)个,(n-1)个,n个.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

24、阅读下列材料,然后回答文后问题.
如图,在n边形内任取一点O,并把O与各顶点连接起来,共构成n个三角形,这n个三角形的内角和为n•180°,再减去以点O为顶点的一个周角,就可以得到n边形的内角和为(n-2)•180°.
回答:
(1)这种方法是将
多边形
问题转化为
三角形
问题来解决的,这种转化是
化归
思想的体现,也正是解决
多边形
问题的基本思想;
(2)若在n边形的一边上或外部任取一点O,并把O与各顶点连接起来,那么如何说明n边形的内角和为(n-2)•180°.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料:在多边形边上或内部取一点与多边形各顶点的连线,将多边形分割成若干个小三角形,图1给出了四边形的具体分割方法,分别将四边形分割成了2个、3个、4个小三角形.
(1)请你按照上述方法将图2中的六边形进行分割,并写出每种方法所得到的小三角形的个数;
(2)当多边形为n边形时,按照上述方法进行分割,写出每种分法所得到的小三角形的个数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读材料:在多边形边上或内部取一点与多边形各顶点的连线,将多边形分割成若干个小三角形,图1给出了四边形的具体分割方法,分别将四边形分割成了2个、3个、4个小三角形.
(1)请你按照上述方法将图2中的六边形进行分割,并写出每种方法所得到的小三角形的个数;
(2)当多边形为n边形时,按照上述方法进行分割,写出每种分法所得到的小三角形的个数.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料:多边形的顶点、边上或内部的一点与多边形各顶点的连线,能够将多边形分割成若干个小三角形。如图给出了四边形的具体分割方法,分别将四边形分割成2个、3个、4个小三角形,可以得到四边形的内角和为360°。

(1)请你按照上述方法将图中的五边形进行分割,并写出得到的小三角形的个数;

分别分割成                                  个小三角形;

(2)试把这一结论推广至边形,分别写出按照上述三种分割方法得到的小三角形的个数(按规律写出结论即可,可以不画图),并根据其中的一种分割方法推导出边形的内角和(画出示意图)。

边形:分割成                                 个小三角形。试推导边形的内角和。

查看答案和解析>>

同步练习册答案