精英家教网 > 初中数学 > 题目详情
图(1)是边长分别为a 和6(a>b)的两个等边三角形纸片ABC和C'DE 叠放在一起(C与C'重合)的图形
(1)操作:固定△ABC,将△C'DE绕点C按顺时针方向旋转30°,连接AD、BE,如图(2),在图中,线段BE与AD之间具有怎样的大小关系?证明你的结论;
(2)操作:若将图中的△C'DE,绕点C按顺时针方向任意旋转一个角度α,连接AD、BE,如图(3)在图中,线段BE与AD之间具有怎样的大小关系?证明你的结论。
根据上面的操作过程,请你猜想当α为多少度时,线段AD的长度最大?是多少?当α为多少度时,线段AD的长度最小?是多少?(不要求证明)

解:解:(1)BE=AD,理由如下:
∵△C'DE绕点C按顺时针方向旋转30°,
∴∠BCE=∠ACD=30°,
∵△ABC与△C'DE是等边三角形
∴CA=CB,CE=CD
∴△BCE≌△ACD
∴BE=AD
(2) BE=AD
∵△C'DE绕点C按顺时针方向旋转的角度为α,
∴∠BCE=∠ACD=α,
∵△ABC与△C'DE是等边三角形,
∴CA=CB,CE=CD
∴△BCE≌△ACD
∴BE=AD;
(3)当α为180°时,线段AD的长度最大,等于a+b;
当α为0°(或360°)时,线段AD的长度最小,等于a-b。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图(1)是边长分别为a和b(a>b)的两个等边三角形纸片ABC和C′DE叠放一起(C与C′重合)的图形.

(1)若将图(1)中的△C′DE,绕点C顺时针旋转任意一个角度α,连接AD、BE,如图(2),此时,线段BE与AD之间具有怎样的数量关系?试证明你的结论;
(2)根据上述操作过程,请你猜想:当α为多少度时,线段AD的长度最大?是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1是边长分别为4
3
和3的两个等边三角形纸片ABC和CDE叠放在一起.
(1)固定△ABC,将△CDE绕点C顺时针旋转30°得到△CDE,连接AD、BE、CE的延长线交AB于点F(图2),线段BE与AD之间有怎样的大小关系?证明你的结论;
(2)固定△CDE,将△ABC移动,使顶点C落在CE的中点G,边BG交DE于点M,边AG交DC于点N,求证:CN•EM=EG•CG;
(3)将图2中的△CDE,在线段CF上沿着CF方向以每秒1个单位的速度平移,平移后的△CDE设为△PQR(图4);探究:设△PQR移动时间为x秒,△PQR与△ABC重叠部分的面积为y,求y与x之间的函数解析式,并写出函数自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,是边长分别为6和4的两个等边三角形纸片ABC和CD1E1叠放在一起.
(1)操作:固定△ABC,将△CD1E1绕点C顺时针旋转得到△CDE,连接AD、BE,如图2.探究:在图2中,线段BE与AD之间有怎样的大小关系?并请说明理由;
(2)操作:固定△ABC,若将△CD1E1绕点C顺时针旋转30°得到△CDE,连接AD、BE,CE的延长线交AB于点F,在线段CF上沿着CF方向平移,(点F与点P重合即停止平移)平移后的△CDE设为△PQR,如图3.
探究:在图3中,除三角形ABC和CDE外,还有哪个三角形是等腰三角形?写出你的结论(不必说明理由);
(3)探究:如图3,在(2)的条件下,设CQ=x,用x代数式表示出GH的长.    

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图(1)是边长分别为a和b(a>b)的两个等边三角形纸片ABC和C′DE叠放一起(C与C′重合)的图形.

(1)若将图(1)中的△C′DE,绕点C顺时针旋转任意一个角度α,连接AD、BE,如图(2),此时,线段BE与AD之间具有怎样的数量关系?试证明你的结论;
(2)根据上述操作过程,请你猜想:当α为多少度时,线段AD的长度最大?是多少?

查看答案和解析>>

同步练习册答案