【答案】
分析:先根据反比例函数图象上点的坐标特征可设C(a,

),D(b,

),再由A,B是函数

在第一象限图象上的两个点,AC∥BD∥x轴,得出A(ak,

),B(bk,

),那么根据

,得出a=bm.过点C作CM⊥y轴于点M,作CN⊥x轴于点N,过点D作DP⊥x轴于点P,则△COD的面积=矩形ONCM的面积+梯形PDCN的面积-△COM的面积-△DOP的面积,由反比例函数系数k的几何意义,可知矩形ONCM的面积=1,△COM的面积=△DOP的面积=

,所以△COD的面积=梯形PDCN的面积,根据梯形的面积公式即可求解.
解答:
解:∵C,D是函数

上两点,
∴可设C(a,

),D(b,

),
∵A,B是函数

在第一象限图象上的两个点,AC∥BD∥x轴,
∴A(ak,

),B(bk,

).
∵

,
∴

=m,
由图可知k≠1,
∴a=bm.
如图,过点C作CM⊥y轴于点M,作CN⊥x轴于点N,过点D作DP⊥x轴于点P,
则△COD的面积=矩形ONCM的面积+梯形PDCN的面积-△COM的面积-△DOP的面积
=1+

(

+

)•(b-a)-

-

=

(

+

)•(b-bm)
=

.
故答案为

.
点评:本题考查了反比例函数图象上点的坐标特征,平行于坐标轴的直线上点的坐标特征,反比例函数系数k的几何意义,三角形的面积,有一定难度.运用数形结合的思想,准确地设出点的坐标是解题的关键.