精英家教网 > 初中数学 > 题目详情
21、如图所示的直角坐标系中,三角形ABC的顶点坐标分别是A(0,0)、B(6,0)C(5,5).如果将三角形ABC向上平移3个单位长度,得三角形A1B1C1,再向右平移2个单位长度,得到三角形A2B2C2.分别画出三角形A1B1C1和三角形A2B2C2并试求出A2、B2、C2的坐标?
分析:分别将对应点A 1,B 1,C 1,A 2,B 2,C 2,按要求平移即可得出图象.
解答:解:如图所示,
A 2(2,3),B 2(8,3),C 2(7,8).
点评:此题主要考查了图象的平移以及坐标原点的确定,根据平移性质分别平移对应点是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05米.建立如图所示的直角坐标系,则抛物线的表达式为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

58、丁丁推铅球的出手高度为1.6m,在如图所示的直角坐标系中,铅球运动轨迹是抛物线y=-0.1(x-k)2+2.5,求铅球的落点与丁丁的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:OE是⊙E的半径,以OE为直径的⊙D与⊙E的弦OA相交于点B,在如图所示的直角坐标系中,⊙E交y轴于点C,连接BE、AC.
(1)当点A在第一象限⊙E上移动时,写出你认为正确的结论:
 
(至少写出四种不同类型的结论);
(2)若线段BE、OB的长是关于x的方程x2-(m+1)x+m=0的两根,且OB<BE,OE=2,求以E点为顶点且经过点B的抛物线的解析式;
(3)该抛物线上是否存在点P,使得△PBE是以BE为直角边的直角三精英家教网角形?若存在,求出点P的坐标;若不存在,说明其理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,等腰△ABC的腰长为2
2
,底边BC=4,以BC所在的直线为x轴,BC的垂直平分线为y轴建立如图所示的直角坐标系,则B
 
、C
 
、A
 

查看答案和解析>>

科目:初中数学 来源: 题型:

18、在边长为1的方格纸上建立如图所示的直角坐标系,把△ABC向下平移6个单位长度,得到△A1B1C1,画从出△A1B1C1,并作出△A1B1C1关于y轴对称的△A2B2C2,并直接写出点A2,B2,C2的坐标.
A2
-3,-2
,B2
-1,-3
,C2
-4,-4

查看答案和解析>>

同步练习册答案