【题目】先化简,再求值:
,其中x是不等式组
的整数解.
【答案】4(x﹣1),4.
【解析】试题分析:解不等式组,先求出满足不等式组的整数解.化简分式,把不等式组的整数解代入化简后的分式,求出其值.
试题解析:解不等式组,得1<x<3,
又∵x为整数,∴x=2.
原式
∴原式=4×2-4=4.
【题型】解答题
【结束】
23
【题目】如图,已知A(0,4),B(-2,2),C(3,0).
![]()
(1)作△ABC关于x轴对称的△A1B1C1;
(2)写出点A1,B1,C1的坐标;
(3)△A1B1C1的面积S△A1B1C1=______.
科目:初中数学 来源: 题型:
【题目】我们给出如下定义:在平面直角坐标系xOy中,如果一条抛物线平移后得到的抛物线经过原抛物线的顶点,那么这条抛物线叫做原抛物线的过顶抛物线.
如下图,抛物线F2都是抛物线F1的过顶抛物线,设F1的顶点为A,F2的对称轴分别交F1、F2于点D、B,点C是点A关于直线BD的对称点.
![]()
(1)如图1,如果抛物线y=x 2的过顶抛物线为y=ax2+bx,C(2,0),那么
①a= ,b= .
②如果顺次连接A、B、C、D四点,那么四边形ABCD为( )
A.平行四边形 B.矩形 C.菱形 D.正方形
(2)如图2,抛物线y=ax2+c的过顶抛物线为F2,B(2,c-1).求四边形ABCD的面积.
(3)如果抛物线
的过顶抛物线是F2,四边形ABCD的面积为
,请直接写出点B的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1、x2
(1)求实数k的取值范围。
(2)若方程两实根x1、x2满足x1+x2=﹣x1x2,求k的值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A、F、C、D在同一条直线上,已知AF=DC,∠A=∠D,BC∥EF,求证:AB=DE.
![]()
【答案】证明见解析.
【解析】试题分析:欲证明AB=DE,只要证明△ABC≌△DEF即可.
试题解析:∵AF=CD,
∴AC=DF,
∵BC∥EF,
∴∠ACB=∠DFE,
在△ABC和△DEF中,
,
∴△ABC≌△DEF(ASA),
∴AB=DE.
考点:全等三角形的判定与性质.
【题型】解答题
【结束】
25
【题目】如图,
,AE=BD,点D在AC边上,
,AE和BD相交于点O.
![]()
(1)求证:△AEC≌△BED;
(2)若
,求BDE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】李老师做了个长方形教具,其中一边长为2a+b,另一边长为a﹣b,则该长方形的面积为( )
A.6a+b
B.2a2﹣ab﹣b2
C.3a
D.10a﹣b
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c为x轴的一交点为A(﹣6,0),与y轴的交点为C(0,3),且经过点G(﹣2,3).
![]()
(1)求抛物线的表达式.
(2)点P是线段OA上一动点,过P作平行于y轴的直线与AC交于点Q,设△CPQ的面积为S,求S的最大值.
(3)若点B是抛物线与x轴的另一定点,点D、M在线段AB上,点N在线段AC上,∠DCB=∠CDB,CD是MN的垂直平分线,求点M的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com