精英家教网 > 初中数学 > 题目详情
26、如图,在直角△ABC中,∠ACB=90°,BD平分∠ABC交AC于D,且∠DBC=30°.
(1)求∠A的度数;
(2)过点C作CP交BD于P,若∠CPD=75°,则CP是∠ACB的平分线吗?请说明理由.
分析:(1)根据角平分线的定义,先求∠ABC的度数,再根据三角形的内角和是180°求∠A的度数.
(2)求出∠BCP=∠DCP,则可说CP是∠ACB的平分线.
解答:解:(1)∵BD平分∠ABC交AC于D,且∠DBC=30°,
∴∠ABC=2∠DBC=60°,
∴∠A=180°-∠ABC-∠ACB=180°-60°-90°=30°.
(2)CP是∠ACB的平分线.
证明:∵∠CPD=75°,
∴∠PCB=∠CPD-∠DBC=75°-30°=45°.
∵∠ACB=90°,
∴∠BCP=∠DCP=45°,
∴CP是∠ACB的平分线.
点评:理解角平分线的定义是解决本题的关键,注意运用三角形的外角的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在直角△ABC中,∠C=90°、AB=6、AC=3,⊙O与边AB相切于点D、与边AC交于点E,连接DE,若DE∥BC,AE=2EC,则⊙O的半径是
2
3
2
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角△ABC中,∠C=90°,AB的垂直平分线交AB于D,交AC于F,且BE平分∠ABC,则∠A=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于点D,DE垂直平分AB.
(1)求∠B的度数;
(2)若DC=1,求DB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图.在直角△ABC中,已知∠ACB=90°,CD⊥AB于点D,则下列关系不一定成立的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角△ABC中,∠A=90°,BC边上的垂直平分线交AC于点D;BD平分∠ABC,已知AC=m+2n,BC=2m+2n,则△BDE的周长为
2m+3n
2m+3n
(用含m,n字母表示).

查看答案和解析>>

同步练习册答案